The computation of π to 29,360,000 decimal digits using Borweins quartically convergent algorithm (1988)

  • David H. Bailey


Paper 7: David H. Bailey, “The computation of pi to 29,360,000 decimal digits using Borweins’ quartically convergent algorithm,” Mathematics of Computation, vol. 50 (1988), p. 283–296. Reprinted by permission of the American Mathematical Society.

Synopsis: This paper, written by one of the present editors, describes the computation of π using a set of formulas that at the time (1988) had just been discovered by Jonathan and Peter Borwein: Let \( {a}_0=6-4\sqrt{2} \) and \( {y}_0=\sqrt{2}-1 \). Iterate


Computation Normality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Bailey, “A high-performance fast Fourier transform algorithm for the Cray-2,” J. Supercomputing, v. 1, 1987, pp. 43–60.CrossRefzbMATHGoogle Scholar
  2. 2.
    P. Beckmann, A History of Pi, Golem Press, Boulder, CO, 1971.zbMATHGoogle Scholar
  3. 3.
    A. Borodin & I. Munro, The Computational Complexity of Algebraic and Numeric Problems, American Elsevier, New York, 1975.zbMATHGoogle Scholar
  4. 4.
    J. M. Borwein & P. B. Borwein, “The arithmetic-geometric mean and fast computation of elementary functions,” SIAM Rev., v. 26, 1984, pp. 351–366.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. M. Borwein & P. B. Borwein, “More quadratically converging algorithms for π,” Math. Comp., v. 46, 1986, pp. 247–253.MathSciNetzbMATHGoogle Scholar
  6. 6.
    J. M. Borwein & P. B. Borwein, Pi and the AGMA Study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1987.zbMATHGoogle Scholar
  7. 7.
    R. P. Brent, “Fast multiple-precision evaluation of elementary functions,” J. Assoc. Comput. Mach., v. 23, 1976, pp. 242–251.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N. J., 1974.zbMATHGoogle Scholar
  9. 9.
    W. Gosper, private communication.Google Scholar
  10. 10.
    Emil Grosswald, Topics from the Theory of Numbers, Macmillan, New York, 1966.zbMATHGoogle Scholar
  11. 11.
    G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, London, 1984.zbMATHGoogle Scholar
  12. 12.
    Y. Kanada & Y. Tamura, Calculation of π to 10,013,395 Decimal Places Based on the Gauss-Legendre Algorithm and Gauss Arctangent Relation, Computer Centre, University of Tokyo, 1983.Google Scholar
  13. 13.
    13. D. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1981.zbMATHGoogle Scholar
  14. 14.
    E. Salamin, “Computation of π using arithmetic-geometric mean,” Math. Comp., v. 30, 1976, pp. 565–570.MathSciNetzbMATHGoogle Scholar
  15. 15.
    D. Shanks & J. W. Wrench, Jr., “Calculation of π to 100,000 decimals,” Math. Comp., v. 16, 1962, pp. 76–99.MathSciNetzbMATHGoogle Scholar
  16. 16.
    P. Swarztrauber, “FFT algorithms for vector computers,” Parallel Comput., v. 1, 1984, pp. 45–64.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David H. Bailey
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations