Bijective Rigid Motions of the 2D Cartesian Grid

  • Kacper Pluta
  • Pascal Romon
  • Yukiko Kenmochi
  • Nicolas Passat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9647)

Abstract

Rigid motions are fundamental operations in image processing. While they are bijective and isometric in \(\mathbb {R}^2\), they lose these properties when digitized in \(\mathbb {Z}^2\). To investigate these defects, we first extend a combinatorial model of the local behavior of rigid motions on \(\mathbb {Z}^2\), initially proposed by Nouvel and Rémila for rotations on \(\mathbb {Z}^2\). This allows us to study bijective rigid motions on \(\mathbb {Z}^2\), and to propose two algorithms for verifying whether a given rigid motion restricted to a given finite subset of \(\mathbb {Z}^2\) is bijective.

Keywords

Finite Subset Critical Line Rigid Motion Integer Point Forward Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors express their thanks to Laurent Najman of ESIEE Paris for his remarks concerning the backward algorithm, and to Mariusz Jędrzejczyk of Norbert Barlicki Memorial Teaching Hospital No. 1, Department of Radiology and Diagnostic Imaging, for providing the computer tomography image of a human chest.

The research leading to these results has received funding from the Programme d’Investissements d’Avenir (LabEx Bézout, ANR-10-LABX-58).

References

  1. 1.
    Anglin, W.S.: Using Pythagorean triangles to approximate angles. Am. Math. Mon. 95(6), 540–541 (1988)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Hunter, D.J.: Essentials of Discrete Mathematics, 2nd edn. Jones and Bartlett Learning, Sudbury (2010)MATHGoogle Scholar
  3. 3.
    Jacob, M.A., Andres, E.: On discrete rotations. In: Fifth International Workshop on Discrete Geometry for Computer Imagery, pp. 161–174. Université de Clermont-Ferrand I (1995)Google Scholar
  4. 4.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Elsevier, Amsterdam (2004)MATHGoogle Scholar
  5. 5.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital images under rigid transformations. J. Math. Imaging Vis. 49(2), 418–433 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Nouvel, B., Rémila, É.: On colorations induced by discrete rotations. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 174–183. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Nouvel, B., Rémila, É.: Characterization of bijective discretized rotations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 248–259. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Nouvel, B., Rémila, É.: Configurations induced by discrete rotations: periodicity and quasi-periodicity properties. Discrete Appl. Math. 147(2–3), 325–343 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Roussillon, T., Cœurjolly, D.: Characterization of bijective discretized rotations by Gaussian integers. Research report, LIRIS UMR CNRS 5205, January 2016. https://hal.archives-ouvertes.fr/hal-01259826

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kacper Pluta
    • 1
    • 2
  • Pascal Romon
    • 2
  • Yukiko Kenmochi
    • 1
  • Nicolas Passat
    • 3
  1. 1.Université Paris-Est, LIGM, CNRS-ESIEEParisFrance
  2. 2.Université Paris-Est, LAMAParisFrance
  3. 3.Université de Reims Champagne-Ardenne, CReSTICReimsFrance

Personalised recommendations