Digitization of Partitions and Tessellations

  • Jean Serra
  • B. Ravi Kiran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9647)


We study hierarchies of partitions in a topological space where the interiors of the classes and their frontiers are simultaneously represented. In both continuous and discrete cases our approach rests on tessellations whose classes are \(\mathcal {R}\)-open sets. In the discrete case, the passage from partitions to tessellations is expressed by Alexandrov topology and yields double resolutions. A new topology is proposed to remove the ambiguities of the diagonal configurations. It leads to the triangular grid in \(\mathbb {Z}^{2}\) and the centered cubic grid in \(\mathbb {Z}^{3}\), which are the only translation invariant grids which preserve connectivity and permit the use of saliency functions.


Tessellations Regular sets Hierarchies Khalimsky topology Simplicial complexes 3-D grids 



The authors acknowledge G. Bertrand J. Cousty and T. Geraud for their useful comments, and the two reviewers for their pertinent remarks.


  1. 1.
    Bertrand, G.: Completions and simplicial complexes. In: Domenjoud, E., Kerautret, B., Even, P., Debled-Rennesson, I. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 129–140. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Cousty, J., Bertrand, G.: Uniqueness of the perfect fusion grid on z\({}^{\text{ d }}\). JMIV 34(3), 291–306 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in pseudomanifolds of arbitrary dimension. JMIV 50(3), 261–285 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cousty, J., Najman, L., Serra, J.: Some morphological operators in graph spaces. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 149–160. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Fedorov, E.S.: A Course in Crystallography (In Russian). R. K. Rikker, Saint-Petersburg (1901)Google Scholar
  6. 6.
    Matheron, G.: Les treillis compacts. Technical report, Ecole des Mines, Paris (1996)Google Scholar
  7. 7.
    Heijmans, M.: Morphological Image Operators. Academic Press, Boston (1994)zbMATHGoogle Scholar
  8. 8.
    Khalimsky, E.: Topological structures in computer science. Int. J. Stochast. Anal. 1(1), 25–40 (1987)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kiran, B.R., Serra, J.: Fusion of ground truths and hierarchies of segmentations. Pattern Recogn. Lett. 47, 63–71 (2014)CrossRefGoogle Scholar
  10. 10.
    Kiran, B.R.: Energetic-Lattice based optimization. Ph.D. thesis, Université Paris-Est (2014)Google Scholar
  11. 11.
    Kiselman, C.O.: Digital geometry and mathematical morphology. Lecture Notes, Uppsala University, Departement of Mathematics (2002)Google Scholar
  12. 12.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46(2), 141–161 (1989)CrossRefGoogle Scholar
  13. 13.
    Kronheimer, E.: The topology of digital images. Topol. Its Appl. 46(3), 279–303 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)CrossRefGoogle Scholar
  15. 15.
    Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)zbMATHGoogle Scholar
  16. 16.
    Matheron, G.: Eléments pour une Théorie des Milieux Poreux. Masson, Paris (1967)Google Scholar
  17. 17.
    Mazo, L., Passat, N., Couprie, M., Ronse, C.: Paths, homotopy and reduction in digital images. Acta Applicandae Math. 113(2), 167–193 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Melin, E.: Digital surfaces and boundaries in khalimsky spaces. JMIV 28(2), 169–177 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. PAMI 18(12), 1163–1173 (1996)CrossRefGoogle Scholar
  20. 20.
    Alexandroff, P.: Diskrete raüme rec. math. [mat. sbornik] (1937)Google Scholar
  21. 21.
    Ronse, C.: Regular open or closed sets. Working Document WD59, Philips Research Lab., Brussels (1990)Google Scholar
  22. 22.
    Rosenfeld, A.: Digital topology. Am. Math. Mon. 86, 621–630 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Serra, J.: Image Analysis and Mathematical Morphology. Theoretical Advances, vol. 2. Academic Press, London (1988)Google Scholar
  24. 24.
    Serra, J.: Cube, cube-octahedron or rhombododecahedron as bases for 3-d shape descriptions. In: Arcelli, C., et al. (eds.) Advances in Visual Form Analysis, pp. 502–519 (1997)Google Scholar
  25. 25.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., Orlando (1983)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.A3SI-ESIEE LIGMUniversité Paris-EstNoisy-le-GrandFrance
  2. 2.Center de Robotique, MINES ParisTechPSL-Research UniversityParisFrance

Personalised recommendations