Advertisement

An Augmentation Scheme for Fault Tolerant Control Using Integral Sliding Modes

  • Mirza Tariq Hamayun
  • Christopher Edwards
  • Halim Alwi
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 61)

Abstract

In this chapter a quite different approach is adopted: here an integral sliding mode approach will be retro-fitted to an existing feedback controller. The fault tolerant control allocation scheme in this chapter adopts an a posteri approach, building on an existing state feedback controller designed using only the primary actuators.

Keywords

Actuator Fault Fault Tolerant Control Integral Slide Mode Control Baseline Controller Integral Sliding Mode Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Härkegård, O., Glad, S.T.: Resolving actuator redundancy—optimal control vs. control allocation. Automatica 41, 137–144 (2005)Google Scholar
  2. 2.
    Shin, D., Moon, G., Kim, Y.: Design of reconfigurable flight control system using adaptive sliding mode control: actuator fault. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 219, 321–328 (2005)CrossRefGoogle Scholar
  3. 3.
    Liu, G.P., Patton, R.J.: Eigenstructure Assignment for Control Systems Design. Wiley, Chichester (1998)Google Scholar
  4. 4.
    Ganguli, S., Marcos, A., Balas, G.J.: Reconfigurable LPV control design for Boeing 747-100/200 longitudinal axis. In: Proceedings of the American Control Conference (2002)Google Scholar
  5. 5.
    Duan, G.: Parametric eigenstructure assignment via output feedback based on singular value decompositions. IEE Control Theory Appl. 150(1), 93–100 (2003)CrossRefGoogle Scholar
  6. 6.
    Hess, R.A., Wells, S.R.: Sliding mode control applied to reconfigurable flight control design. J. Guid. Control Dyn. 26, 452–462 (2003)CrossRefGoogle Scholar
  7. 7.
    Shtessel, Y., Buffington, J., Banda, S.: Tailless aircraft flight control using multiple time scale re-configurable sliding modes. IEEE Trans. Control Syst. Technol. 10, 288–296 (2002)CrossRefGoogle Scholar
  8. 8.
    Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault Tolerant Control Using Sliding Modes. Advances in Industrial Control Series. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Wohletz, J.M.: Retrofit Systems for Reconfiguration in Civil Aviation. PhD thesis, MIT (2000)Google Scholar
  10. 10.
    Doyle, M.E.: Retrofit reconfigurable flight control system and the F/A-18C. Master’s thesis, University of Tennessee - Knoxville (2006)Google Scholar
  11. 11.
    Bošković, J.D., Bergstrom, S.E., Mehra, R.K.: Retrofit reconfigurable flight control in the presence of control effector damage. In: Proceedings of the American Control Conference, pp. 2652–2657 (2005)Google Scholar
  12. 12.
    Bošković, J.D., Prasanth, R., Mehra, R.K.: Retrofit fault-tolerant flight control design under control effector damage. J. Guid. Control Dyn. 30(3), 703–712 (2007)CrossRefGoogle Scholar
  13. 13.
    Bošković, J.D.: A new decentralized retrofit adaptive fault-tolerant flight control design. In: International Journal of Adaptive control and signal Processing (2012)Google Scholar
  14. 14.
    Farineau, J.: Lateral electric flight control laws of a civil aircraft based upon eigenstructure assignment technique. In: American Institute of Aeronautics and Astronautics (1989)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mirza Tariq Hamayun
    • 1
  • Christopher Edwards
    • 2
  • Halim Alwi
    • 2
  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.College of Engineering Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations