Skip to main content

Ciliates in Planktonic Food Webs: Communication and Adaptive Response

  • Chapter
  • First Online:
Biocommunication of Ciliates

Abstract

Ciliates are key elements of aquatic food webs, acting as predators of bacteria, algae, other protists and even some metazoans. Planktonic ciliates are important food for zooplankton, and mixotrophic and functionally autotrophic species may significantly contribute to primary production in lakes and in the ocean. Ciliates are linked to other plankton organisms and to abiotic parameters by various direct (e.g., predation and parasitism) and indirect (e.g., nutrient release via excretion, competition for food) interactions. Communication is involved in many of those interactions, but direct evidence from the field is scarce. This is mainly because aquatic ciliates live in a dilute environment and most species occur in low cell numbers. Key processes of chemical and hydromechanical communication among ciliates, between ciliates and their predators and prey, and between ciliates and their endosymbionts have been studied in some detail in vitro. Results from microcosm experiments suggest that ciliates also cooperate with each other and use information mediated by different other organisms. Extrapolating those results obtained in small-scale laboratory experiments to the ocean level is a major challenge for future research. To this end, more communication and cooperation is needed between cell biologists, ecologists, and evolutionary biologists. In contrast to communication, adaptations of natural ciliate populations to their abiotic and biotic environment have been well documented in selected freshwater and marine species. The effect of individual environmental variables and, less often, the interactive effect of several variables on growth and survival rates of ciliates have been studied with a number of ciliate species in the laboratory and inferred from their seasonal occurrence in the field. However, more information is needed on the autecology of free-living ciliate species and their role in the planktonic community. In particular, the significance of indirect (‘lateral’) effects in the food web received little attention and awaits future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auer B, Elzer U, Arndt H (2004) Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J Plankton Res 26:697–709

    Article  Google Scholar 

  • Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F (1983) The ecological role of water column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Becks L, Agrawal AF (2010) Higher rates of sex evolve in spatially heterogeneous environments. Nature 468:89–92

    Article  CAS  PubMed  Google Scholar 

  • Becks L, Agrawal AF (2012) The evolution of sex is favoured during adaptation to new environments. PLoS Biol 10:e1001317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell G (1988) Sex and death in Protozoa. Cambridge University Press, Cambridge

    Google Scholar 

  • Benndorf J (1995) Possibilities and limits for controlling eutrophication by biomanipulation. Int Rev Hydrobiol 80:519–534

    Article  CAS  Google Scholar 

  • Berger H (1999) Monograph of the Oxytrichidae (Ciliophora, Hypotrichia). Springer, Dordrecht

    Book  Google Scholar 

  • Berninger U-G, Finlay BJ, Canter HM (1986) The spatial distribution and ecology of zoochlorellae-bearing ciliates in a productive pond. J Protozool 33:557–563

    Article  Google Scholar 

  • Billen G, Servais P, Becquevort S (1990) Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia 207:37–42

    Article  Google Scholar 

  • Boenigk J (2008) Nanoflagellates: Functional groups and intraspecific variation. Denisia 23:331–335

    Google Scholar 

  • Bruno E, Borg CMA, Kiørboe T (2012) Prey detection and prey capture in copepod nauplii. PLoS ONE 7:e47906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck KR, Newton J (1995) Fecal pellet flux in Dabob Bay during a diatom bloom: contribution of microzooplankton. Limnol Oceanogr 40:306–315

    Article  CAS  Google Scholar 

  • Buonanno F, Anesi A, Guella G, Kumar S, Bharti D, La Terza A, Quassinti L, Bramucci M, Ortenzi C (2014) Chemical Offense by Means of Toxicysts in the Freshwater Ciliate, Coleps hirtus. J Eukaryot Microbiol 61:293–304

    Article  CAS  PubMed  Google Scholar 

  • Calbet A, Isari S, Martínez RA, Saiz E, Garrido S, Peters J, Borrat RM, Alcaraz M (2013) Adaptations to feast and famine in different strains of the marine heterotrophic dinoflagellates Gyrodinium dominans and Oxyrrhis marina. Mar Ecol Prog Ser 483:67–84

    Article  CAS  Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639

    Article  Google Scholar 

  • Chaine AS, Schtickzelle N, Polard T, Huet M, Clobert J (2010) Kin-based recognition and social aggregation in a ciliate. Evolution 64:1290–1300

    PubMed  Google Scholar 

  • Crawford DW (1992) Metabolic cost of motility in planktonic protists: theoretical considerations on size scaling and swimming speed. Microb Ecol 24:1–10

    Article  CAS  PubMed  Google Scholar 

  • DeLong JP, Vasseur DA (2013) Linked exploitation and interference competition drives the variable behavior of a classic predator-prey system. Oikos 122:1393–1400

    Google Scholar 

  • Dinasquet J, Titelman J, Møller LF, Setälä O, Granhag L, Andersen T, Båmstedt U, Haraldsson M, Hosia A, Katajisto T, Kragh T, Kuparinen J, Schrøter ML, Søndergaard M, Tiselius P, Riemann L (2012) Cascading effects of the ctenophore Mnemiopsis leidyi on the planktonic food web in a nutrient-limited estuarine system. Mar Ecol Prog Ser 460:49–61

    Article  CAS  Google Scholar 

  • Dini F, Nyberg D (1993) Sex in ciliates. In: Jones JG (ed) Advances in Microbial Ecology. Plenum Press, New York, pp 129–144

    Google Scholar 

  • Doerder FP, Gates MA, Eberhardt FP, Arslanyolu M (1995) High frequency of sex and equal frequencies of mating types in natural populations of the ciliate Tetrahymena thermophila. Proc Natl Acad Sci USA 92:8715–8718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunthorn M, Katz LA (2010) Secretive ciliates and putative asexuality in microbial eukaryotes. Trends Microbiol 18:183–188

    Article  CAS  PubMed  Google Scholar 

  • Esteban GF, Fenchel T, Finlay BF (2010) Mixotrophy in ciliates. Protist 161:621–641

    Article  CAS  PubMed  Google Scholar 

  • Esteban GF, Finlay BJ, Clarke KJ (2012) Priest Pot in the English Lake District: a showcase of microbial diversity. Freshwater Biol 57:321–330

    Article  Google Scholar 

  • Fenchel T (1987) Ecology of protozoa: The ecology of free-living phagotrophic protists. Science Tech Publishers & Springer-Verlag, Madison, Berlin

    Google Scholar 

  • Fenchel T, Finlay BJ, Gianni A (1989) Microaerophily in ciliates: responses of an Euplotes species (Hypotrichida) to oxygen tension. Arch Protistenkd 137:317–330

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (1990) Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol Ecol 74:269–276

    Article  Google Scholar 

  • Fenchel T (1992) What can ecologists learn from microbes: life beneath a square centimetre of sediment surface. Funct Ecol 6:499–507

    Article  Google Scholar 

  • Finlay BJ, Fenchel T (1986) Spatial distribution of microaerophilic ciliates in lakes: the interacting roles of oxygen tension, blue light and gravity. In: Megušar F, Gantar M (eds) Fourth International Symposium on Microbial Ecology. Slovene Society for Microbiology, Ljubljana, 343–348

    Google Scholar 

  • Foissner W, Berger H, Schaumburg J (1999) Identification and Ecology of Limnetic Plankton Ciliates. Bayerisches Landesamt für Wasserwirtschaft, Munich

    Google Scholar 

  • Fradkin S (1995) Effects of interference and exploitative competition from large-bodied cladocerans on rotifer community structure. Hydrobiologia 313–314:387–393

    Article  Google Scholar 

  • Fyda J (1998) Predator induced morphological changes in the ciliate Colpidium (Protozoa, Ciliophora). Eur J Protistol 34:111–117

    Article  Google Scholar 

  • Gächter E, Weisse T (2006) Local adaptation among geographically distant clones of the cosmopolitan freshwater ciliate Meseres corlissi. I. Temperature response. Aquat Microb Ecol 45:291–300

    Article  Google Scholar 

  • Gilbert JJ (1994) Jumping behavior in the oligotrich ciliates Strobilidium velox and Halteria grandinella and its significance as a defense against rotifers. Microb Ecol 27:189–200

    Article  CAS  PubMed  Google Scholar 

  • Görtz H-D (1996) Symbiosis in ciliates. In: Hausmann K, Bradbury PC, Fischer G (eds) Ciliates: Cells as Organisms. Stuttgart, pp 441–462

    Google Scholar 

  • Guella G, Dini F, Tomei A, Pietra F (1994) Preuplotin, a putative biogenetic precursor of the euplotins, bioactive sesquiterpenoids of the marine ciliated protist Euplotes crassus. J Chem Soc, Perkin Trans I 2:161–166

    Article  Google Scholar 

  • Guella G, Skropeta D, Di Giuseppe G, Dini F (2010) Structures, biological activities and phylogenetic relationships of terpenoids from marine ciliates of the genus Euplotes. Mar Drugs 8:2080–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha J-Y, Saneyoshi M, Park H-D, Toda H, Kitano S, Homma T, Shiina T, Moriyama Y, Chang K-H, Hanazato T (2013) Lake restoration by biomanipulation using piscivore and Daphnia stocking; results of the biomanipulation in Japan. Limnology 14:19–30

    Article  Google Scholar 

  • Hadany L, Otto SP (2009) Condition-dependent sex and the rate of adaptation. Am Nat 174S71–S78

    Google Scholar 

  • Hausmann K, Bradbury PC, Fischer G (eds) (1996) Ciliates: Cells as organisms. Stuttgart

    Google Scholar 

  • Jacob S, Chaine AS, Schtickzelle N, Huet M, Clobert J (2015) Social information from immigrants: multiple immigrant-based sources of information for dispersal decisions in a ciliate. J Animal Ecol 84:1373–1383

    Article  Google Scholar 

  • Jakobsen HH (2001) Escape response of planktonic protists to fluid mechanical signals. Mar Ecol Progr Ser 214:67–78

    Article  Google Scholar 

  • Kuhlmann H-W (1993) Giants in Lembadion bullinum (Ciliophora, Hymenostomata)—general morphology and inducing conditions. Arch Protistenkd 143:325–336

    Article  Google Scholar 

  • Kuhlmann H-W, Kusch J, Heckmann K (1999) Predator-induced defenses in ciliated protozoa. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press. Princeton, New Jersey, pp 142–159

    Google Scholar 

  • Kusch J, Welter H, Stremmel M, Schmidt HJ (2000) Genetic diversity in populations of a freshwater ciliate. Hydrobiologia 431:185–192

    Article  Google Scholar 

  • Lampert W, Sommer U (2007) Limnoecology. Oxford University Press, Oxford

    Google Scholar 

  • Li J, Fenton A, Kettley L, Roberts P, Montagnes DJS (2013) Reconsidering the importance of the past in predator–prey models: both numerical and functional responses depend on delayed prey densities. Proc R Soc B 280

    Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418

    Article  Google Scholar 

  • Long JD, Smalley GW, Barsby T, Anderson JT, Hay ME (2007) Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. Proc Natl Acad Sci USA 104:10512–10517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe CD, Day A, Kemp SJ, Montagnes DJS (2005) There are high levels of functional and genetic diversity in Oxyrrhis marina. J Eukaryot Microbiol 52:250–257

    Article  CAS  PubMed  Google Scholar 

  • Lucchesi P, Santangelo G (2004) How often does conjugation in ciliates occur? Clues from a seven-year study on marine sandy shores. Aquat Microb Ecol 36:195–200

    Article  Google Scholar 

  • Luporini P, Alimenti C, Vallesi A (2015) Ciliate pheromone structures and activity: a review. Ital J Zool 82:3–14

    Article  CAS  Google Scholar 

  • Lynn DH (2008) The ciliated protozoa—characterization, classification, and guide to the literature. Springer, Dordrecht

    Google Scholar 

  • Mazanec AI, Trevarrow B (1998) Coleps, scourge of the baby zebrafish. Zebrafish Sci Monit 5:1

    Google Scholar 

  • McQueen DL, Johannes MRS, Post JR, Stewart TJ, Lean DRS (1989) Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol Monogr 59:289–309

    Article  Google Scholar 

  • Miyake A, Buonanno F, Saltalamacchia P, Masaki ME, Iio H (2003) Chemical defense by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. Eur J Protistol 39:25–36

    Article  Google Scholar 

  • Montagnes DJS (1996) Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar Ecol Prog Ser 130:241–254

    Article  Google Scholar 

  • Montagnes DJS, Berger JD, Taylor FJR (1996) Growth rate of the marine planktonic ciliate Strombidinopsis cheshiri Snyder and Ohman as a function of food concentration and interclonal variability. J Exp Mar Biol Ecol 206:121–132

    Article  Google Scholar 

  • Morin PJ (2011) Community Ecology, 2nd edn. John Wiley & Sons Ltd, Chichester, UK

    Book  Google Scholar 

  • Müller H (1989) The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb Ecol 18:261–273

    Article  PubMed  Google Scholar 

  • Müller H (1991) Pseudobalanion planctonicum (Ciliophora, Prostomatida): ecological significance of an algivorous nanociliate in a deep meso-eutrophic lake. J Plankton Res 13:247–262

    Article  Google Scholar 

  • Müller H, Schöne A, Pinto-Coelho RM, Schweizer A, Weisse T (1991) Seasonal succession of ciliates in Lake Constance. Microb Ecol 21:119–138

    Article  PubMed  Google Scholar 

  • Müller H, Weisse T (1994) Laboratory and field observations on the scuticociliate Histiobalantium from the pelagic zone of Lake Constance, FRG. J Plankton Res 16:391–401

    Article  Google Scholar 

  • Müller H, Schlegel A (1999) Responses of three freshwater planktonic ciliates with different feeding modes to cryptophyte and diatom prey. Aquat Microb Ecol 17:49–60

    Article  Google Scholar 

  • Naitoh Y, Eckert R (1969) Ironic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation. Science 164:963–965

    Article  CAS  PubMed  Google Scholar 

  • Nanney DL (1980) Experimental ciliatology. An introduction to genetic and developmental analysis in ciliates. Wiley, Somerset, New Jersey

    Google Scholar 

  • Omori M, Hamner WM (1982) Patchy distribution of zooplankton: behavior, population assessment and sampling problems. Mar Biol 72:193–200

    Article  Google Scholar 

  • Ong’ondo GO, Yasindi AW, Oduor SO, Jost S, Schagerl M, Sonntag B, Boenigk J (2013) Ecology and community structure of ciliated protists in two alkaline–saline Rift Valley lakes in Kenya with special emphasis on Frontonia. J Plankton Res 35:759–771

    Article  Google Scholar 

  • Pennekamp F, Mitchell KA, Chaine A, Schtickzelle N (2014) Dispersal propensity in Tetrahymena thermophila ciliates–a reaction norm perspective. Evolution 68:2319–2330

    PubMed  Google Scholar 

  • Peretyatko A, Teissier S, De Backer S, Triest L (2012) Biomanipulation of hypereutrophic ponds: when it works and why it fails. Environ Monit Assess 184:1517–1531

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Uz B (1995) Growth rate variability in geographically divers clones of Uronema (Ciliophora: Scuticociliatida). FEMS Microb Ecol 16:193–204

    Article  Google Scholar 

  • Pomeroy LR (1974) The ocean’s food web: a changing paradigm. Bioscience 24:499–504

    Article  Google Scholar 

  • Porter KG, Sherr EB, Sherr BF, Pace M, Sanders RW (1985) Protozoa in planktonic food webs. J Protozool 32:409–415

    Article  Google Scholar 

  • Posch T, Jezbera J, Vrba J, Šimek K, Pernthaler J, Andreatta S, Sonntag B (2001) Size selective feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and its effects on bacterial community structure: a study from a continuous cultivation system. Microb Ecol 42:217–227

    Article  PubMed  Google Scholar 

  • Posch T, Eugster B, Pomati F, Pernthaler J, Pitsch G, Eckert EM (2015) Network of interactions between ciliates and phytoplankton during spring. Front Microbiol 6

    Google Scholar 

  • Pröschold T, Darienko T, Silva DC, Reisser W, Krienitz L (2011) The systematics of Zoochlorella revisited employing an integrative approach. Environ Microbiol 13:350–364

    Article  PubMed  CAS  Google Scholar 

  • Ramoino P, Usai C, Maccione S, Beltrame F, Diaspro A, Fato M, Guella G, Dini F (2007) Effect of the bioactive metabolite euplotin C on phagocytosis and fluid-phase endocytosis in the single-celled eukaryote Paramecium. Aquat Toxicol 85:67–75

    Article  CAS  PubMed  Google Scholar 

  • Rosati G, Modeo L (2003) Extrusomes in ciliates: diversification, distribution, and phylogenetic implications. J Eukaryot Microbiol 30:383–402

    Article  Google Scholar 

  • Rothhaupt KO (1988) Mechanistic resource competition theory applied to laboratory experiments with zooplankton. Nature 333:660–662

    Article  Google Scholar 

  • Rothschild BJ, Osborn TR (1988) Small-scale turbulence and plankton contact rates. J Plankton Res 3:465–474

    Article  Google Scholar 

  • Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–363

    Article  Google Scholar 

  • Schtickzelle N, Fjerdingstad EJ, Chaine A, Clobert J (2009) Cooperative social clusters are not destroyed by dispersal in a ciliate. BMC Evol Biol 9

    Google Scholar 

  • Schurko AM, Neiman M, Logsdon JM Jr (2009) Signs of sex: what we know and how we know it. Trends Ecol Evol 24:208–217

    Article  PubMed  Google Scholar 

  • Shapiro J, Lamarra V, Lynch M (1975) Biomanipulation: an ecosystem approach to lake restoration. In: Brezonik PL, Fox JL (eds) Water Quality Management through Biological Control. University of Florida. Gainesville, Fl pp 85–96

    Google Scholar 

  • Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263

    Article  Google Scholar 

  • Siegel RW (1961) Direct and indirect evidence that free-living ciliates conjugate in nature. J Eukaryot Microbiol 8:27–29

    Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG model of a seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Sommer U (ed) (1989) The role of competition for resources in phytoplankton succession. In: Plankton ecology. Springer Verlag. Berlin, pp 57–106

    Google Scholar 

  • Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lurling M, Molinero JC, Mooij WM, van Donk E, Winder M (2012) Beyond the Plankton Ecology Group (PEG) Model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448

    Article  Google Scholar 

  • Sonneborn TM (1936) Factors determining conjugation in Paramecium aurelia. I. The cyclical factor: The recency of nuclear reorganization. Genetics 21:503–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonneborn TM (1937) Sex, sex inheritance and sex determination in Paramecium aurelia. Proc Natl Acad Sci USA 23:378–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonntag B, Posch T, Klammer S, Teubner K, Psenner R (2006) Phagotrophic ciliates and flagellates in an oligotrophic deep alpine lake: contrasting variability with seasons and depths. Aquat Microb Ecol 43:193–207

    Article  Google Scholar 

  • Sonntag B, Summerer M, Sommaruga R (2011a) Factors involved in the distribution pattern of ciliates in the water column of a transparent alpine lake. J Plankton Res 33:541–546

    Article  Google Scholar 

  • Sonntag B, Summerer M, Sommaruga R (2011b) Are freshwater mixotrophic ciliates less sensitive to solar ultraviolet radiation than heterotrophic ones? J Eukaryot Microbiol 58:196–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow C-ET, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun F, Caron DA, Fuhrman JA (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoecker DK (1984) Particle production by planktonic ciliates. Limnol Oceanogr 29:930–940

    Article  Google Scholar 

  • Sugiura M, Shiotani H, Suzaki T, Harumoto T (2010) Behavioural changes induced by the conjugation-inducing pheromones, gamone 1 and 2, in the ciliate Blepharisma japonicum. Europ J Protistol 46:143–149

    Article  Google Scholar 

  • Tamar H (1968) Observations on Halteria bifurcata sp. n. and Halteria grandinella. Acta Protozool 6:175–183

    Google Scholar 

  • Tamar H (1979) The movements of jumping ciliates. Arch Protistenk 122:290–327

    Article  Google Scholar 

  • Taylor FJR, Blackbourn DJ, Blackbourn J (1971) The red-water ciliate Mesodinium rubrum and its “incomplete symbionts”: a review including new ultrastructural observations. J Fish Res Board Can 28:391–407

    Article  Google Scholar 

  • Tilman D (1981) Test of resource competition theory using four species of Lake Michigan algae. Ecology 62:802–815

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13:349–372

    Article  Google Scholar 

  • Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication Technical Report. OECD

    Google Scholar 

  • Weisse T, Müller H, Pinto-Coelho RM, Schweizer A, Springmann D, Baldringer G (1990) Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol Oceanogr 35:781–794

    Article  Google Scholar 

  • Weisse T, Scheffel-Möser U (1990) Morphometric characteristics and carbon content of Phaeocystis cf. pouchetii. Bot Mar 33:197–203

    Article  Google Scholar 

  • Weisse T (1991) The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. J Plankton Res 13:167–185

    Article  Google Scholar 

  • Weisse T, Scheffel-Möser U (1991) Uncoupling the microbial loop: growth and grazing loss rates of bacteria and heterotrophic nanoflagellates in the North Atlantic. Mar Ecol Progr Ser 71:195–205

    Article  Google Scholar 

  • Weisse T, Müller H (1998) Planktonic protozoa and the microbial food web in Lake Constance. Arch Hydrobiol Spec Iss Adv Limnol 53:223–254

    Google Scholar 

  • Weisse T, Frahm A (2001) Species-specific interactions between small planktonic ciliates (Urotricha spp.) and rotifers (Keratella spp.). J Plankton Res 23:1329–1338

    Article  Google Scholar 

  • Weisse T, Karstens N, Meyer VCM, Janke L, Lettner S, Teichgräber K (2001) Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquat Microb Ecol 26:167–179

    Article  Google Scholar 

  • Weisse T (2002) The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. Antonie Van Leeuwenhoek 81:327–341

    Article  PubMed  Google Scholar 

  • Weisse T, Frahm A (2002) Direct and indirect impact of two common rotifer species (Keratella spp.) on two abundant ciliate species (Urotricha furcata, Balanion planctonicum). Freshwater Biol 47:53–64

    Article  Google Scholar 

  • Weisse T, Stadler P, Lindström ES, Kimmance SA, Montagnes DJS (2002) Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farcta. Limnol Oceanogr 47:1447–1455

    Article  Google Scholar 

  • Weisse T (2003) Pelagic microbes—Protozoa and the microbial food web. In: O’Sullivan P, Reynolds CS (eds) The lakes handbook. Blackwell Science Ltd., Oxford, pp 417–460

    Google Scholar 

  • Weisse T (2006) Freshwater ciliates as ecophysiological model organisms—lessons from Daphnia, major achievements, and future perspectives. Arch Hydrobiol 167:371–402

    Article  Google Scholar 

  • Weisse T, Rammer S (2006) Pronounced ecophysiological clonal differences of two common freshwater ciliates, Coleps spetai (Prostomatida) and Rimostrombidium lacustris (Oligotrichida), challenge the morphospecies concept. J Plankton Res 27:55–63

    Google Scholar 

  • Weisse T, Scheffel U, Stadler P, Foissner W (2007) Local adaptation among geographically distant clones of the cosmopolitan freshwater ciliate Meseres corlissi. II. Response to pH. Aquat Microb Ecol 47:289–297

    Article  Google Scholar 

  • Weisse T (2008) Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodivers Conserv 17:243–259

    Article  Google Scholar 

  • Weisse T, Scheffel U, Stadler P, Foissner W (2013a) Functional ecology of the ciliate Glaucomides bromelicola, and comparison with the sympatric species Bromeliothrix metopoides J Eukaryot Microb 60:578–587

    Google Scholar 

  • Weisse T, Scheffel U, Stadler P, Foissner W (2013b) Bromeliothrix metopoides, a boom and bust ciliate (Ciliophora, Colpodea) from tank bromeliads. Eur J Protistol 49:406–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Weisse T (2014) Ciliates and the rare biosphere—community ecology and population dynamics. J Eukaryot Microb 61:419–433

    Article  Google Scholar 

  • Weisse T, Anderson R, Arndt H, Calbet A, Hansen PJ, Montagnes DJS (2016) Functional Ecology of aquatic phagotrophic protists—concepts, limitations, and perspectives. Eur J Protistol (in press)

    Google Scholar 

  • Wickham SA, Gugenberger E (2008) Evaluating inducible morphological defences in the common freshwater ciliate, Coleps hirtus. J Plankton Res 30:1315–1321

    Article  Google Scholar 

  • Williams PJLeB (1981) Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch Sonderh 1:1–28

    Google Scholar 

  • Zhang Y, Klapper R, Lohbeck KT, Bach LT, Schulz KG, Reusch TBH, Riebesell U (2014) Between- and within-population variations in thermal reaction norms of the coccolithophore Emiliania huxleyi. Limnol Oceanogr 59:1570–1580

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Sonntag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weisse, T., Sonntag, B. (2016). Ciliates in Planktonic Food Webs: Communication and Adaptive Response. In: Witzany, G., Nowacki, M. (eds) Biocommunication of Ciliates. Springer, Cham. https://doi.org/10.1007/978-3-319-32211-7_19

Download citation

Publish with us

Policies and ethics