Investigating the Swimming of Microbial Pathogens Using Digital Holography

  • K. L. Thornton
  • R. C. Findlay
  • P. B. Walrad
  • L. G. Wilson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 915)


To understand much of the behaviour of microbial pathogens, it is necessary to image living cells, their interactions with each other and with host cells. Species such as Escherichia coli are difficult subjects to image: they are typically microscopic, colourless and transparent. Traditional cell visualisation techniques such as fluorescent tagging or phase-contrast microscopy give excellent information on cell behaviour in two dimensions, but no information about cells moving in three dimensions. We review the use of digital holographic microscopy for three-dimensional imaging at high speeds, and demonstrate its use for capturing the shape and swimming behaviour of three important model pathogens: E. coli, Plasmodium spp. and Leishmania spp.


Optical microscopy Holography Image analysis Leishmania Plasmodium 


  1. Allen RD (1985) New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Ann Rev Biophys Biophys Chem 14:265–290CrossRefGoogle Scholar
  2. Bates PA, Rogers PA (2004) New insights into the developmental biology and transmission mechanisms of leishmania. Curr Mol Med 4:601–609CrossRefPubMedGoogle Scholar
  3. Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500CrossRefPubMedGoogle Scholar
  4. Born M, Wolf E (2005) Principles of optics, 7th edn. Cambridge University PressGoogle Scholar
  5. Cavicchioli R, Curmi PMG, Saunders N, Thomas T (2003) Pathogenic archaea: do they exist? BioEssays 25(11):1119–1128CrossRefPubMedGoogle Scholar
  6. Colin R, Zhang R, Wilson LG (2014) Fast, high-throughput measurement of collective behaviour in a bacterial population. J R Soc Interface 11:20140486CrossRefPubMedPubMedCentralGoogle Scholar
  7. Corkidi G, Taboada B, Wood CD, Guerrero A, Darszon A (2008) Tracking sperm in three-dimensions. Biochem Biophys Res Comm 373:125–129CrossRefPubMedGoogle Scholar
  8. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310CrossRefGoogle Scholar
  9. Cuche E, Bevilacqua F, Depeursinge C (1999) Digital holography for quantitative phase-contrast imaging. Opt Lett 24:291–293CrossRefPubMedGoogle Scholar
  10. Edwards C, Zhoui R, Hwang S-H, McKeown SJ, Wang K, Bhaduri B, Ganti R, Yunker PJ, Yodh AG, Rogers JA, Goddard LL, Popescu G (2014) Diffraction phase microscopy: monitoring nanoscale dynamics in materials science. Appl Optics 53(27):G33–G43CrossRefGoogle Scholar
  11. Forestier C-L, Machu C, Loussert C, Pescher P, Späth GF (2011) Imaging host cell-leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host Microbe 9(4):319–330Google Scholar
  12. Foxman B (2010) The epidemiology of urinary tract infection. Nat Rev Urol 7:653–660CrossRefPubMedGoogle Scholar
  13. Fung J, Martin KE, Perry RW, Katz DM, McGorty R, Manoharan VN (2011) Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy. Opt Express 19(9):8051–8065CrossRefPubMedGoogle Scholar
  14. Gabor D (1948) A new microscopic principle. Nature 161(161):18275–18282Google Scholar
  15. Giuliano CB, Zhang R, Wilson LG (2014) Digital inline holographic microscopy (dihm) of weakly-scattering subjects. J Vis Exp 84:e50488Google Scholar
  16. Goodman JW (2005) Introduction to fourier optics, 3rd edn. Roberts and CompanyGoogle Scholar
  17. Hill KL (2003) Biology and mechanism of trypanosome cell motility. Eukaryot Cell 2(2):200–208CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jikeli JF, Alvarez L, Friedrich BM, Wilson LG, Pascal R, Colin R, Pichlo M, Rennhack A, Brenker C, Kaupp UB (2015) Sperm navigation along helical paths in 3d chemoattractant landscapes. Nat Commun 6:7985CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Micriobiol 9:604–615CrossRefGoogle Scholar
  20. Kim MK (2010) Principles and techniques of digital holographic microscopy. SPIE Rev 1:018005Google Scholar
  21. Lauga E, DiLuzio WR, Whitesides GM, Stone HA (2006) Swimming in circles: motion of bacteria near solid boundaries. Biophys J 90:400–412Google Scholar
  22. Lee S-H, Grier DG (2007) Holographic microscopy of holographically trapped three-dimensional structures. Opt Express 15(4):1505–1512CrossRefPubMedGoogle Scholar
  23. Lee SH, Roichman Y, Yi G-R, Kim S-H, Yang S-M, van Blaaderen A, van Oostrum P, Grier DG (2007) Characterizing and tracking single colloidal particles with video holographic microscopy. Opt Express 15(26):18275–18282CrossRefPubMedGoogle Scholar
  24. Li G, Tang JX (2009) Accumulation of microswimmers near a surface mediated by collision and rotational brownian motion. Phys Rev Lett 103:078101CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lindemann CB (2011) Experimental evidence for the geometric clutch hypothesis. Curr Top Dev Biol 95:1–31CrossRefPubMedGoogle Scholar
  26. Mandel L, Wolf E (1995) Optical coherence and quantum optics. Cambridge University PressGoogle Scholar
  27. Merola F, Miccio L, Memmolo P, Di Caprio G, Galli A, Puglisi R, Balduzzi D, Coppola G, Netti P, Ferraro P (2013) Digital holography as a method for 3d imaging and estimating the biovolume of motile cells. Lab Chip 13:4512–4516CrossRefPubMedGoogle Scholar
  28. Molaei M, Barry M, Stocker R, Sheng J (2014) Failed escape: solid surfaces prevent tumbling of Escherichia coli. Phys Rev Lett 113:068103CrossRefPubMedGoogle Scholar
  29. Mosser DM, Brittingham A (1997) Leishmania, macrophages and complement: a tale of subversion and exploitation. Parasitology 115:S9–S23CrossRefPubMedGoogle Scholar
  30. Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, Oztoprak C, Seo S, Khademhosseini B, Ozcan A (2010) Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10:1417–1428CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nakane D, Miyata M (2012) Mycoplasma mobile cells elongated by detergent and their pivoting movements in gliding. J Bacteriol 194(1):122–130CrossRefPubMedPubMedCentralGoogle Scholar
  32. Park YK, Choi W, Yaqoob Z, Dasari R, Badizadegan K, Feld MS (2009) Speckle-field digital holographic microscopy. Opt Express 17(15):12285–12292CrossRefPubMedPubMedCentralGoogle Scholar
  33. Riedel-Kruse IH, Hilfinger A, Howard J, Jülicher F (2007) How molecular motors shape the flagellar beat. HFSP J 1(3):192–208CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rogers ME (2012) The role of Leishmania proteophosphoglycans in sand fly transmission and infection of the mammalian host. Front. Microbiol 3:223CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rogers M, Kropf P, Choi B-S, Dillon R, Podinovskaia M, Bates P, Müller I (2009) Proteophosophoglycans regurgitated by leishmania-infected sand flies target the l-arginine metabolism of host macrophages to promote parasite survival. Microbes Infect 5:e1000555Google Scholar
  36. Rogers ME, Corware K, Müller I, Bates PA (2010) Leishmania infantum proteophosphoglycans regurgitated by the bite of its natural sand fly vector, Lutzomyia longipalpis, promote parasite establishment in mouse skin and skin-distant tissues. Microbes Infect 12:875–879CrossRefPubMedGoogle Scholar
  37. Rosen J, Brooker G (2007) Fluorescence incoherent color holography. Opt Express 15:2244–2250CrossRefGoogle Scholar
  38. Schnars U, Jüptner W (1994) Direct recording of holograms by a ccd target and numerical reconstruction. Appl Opt 33:179–181CrossRefPubMedGoogle Scholar
  39. Schneider CA, Rasband WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat Meth 9(7):671–675CrossRefGoogle Scholar
  40. Shrivastava A, Lele PP, Berg HC (2015) A rotary motor drives Flavobacterium gliding. Curr Biol 25:338–341CrossRefPubMedPubMedCentralGoogle Scholar
  41. Su TW, Xue L, Ozcan A (2012) High-throughput lensfree 3d tracking of human sperms reveals rare statistics of helical trajectories. Proc Natl Acad Sci 109:16018–16022CrossRefPubMedPubMedCentralGoogle Scholar
  42. Talman AM, Prieto JH, Marques S, Ubaida-Mohien C, Lawniczak M, Wass MN, Xu T, Frank R, Ecker A, Stanway RS, Krishna S, Sternberg MEJ, Christophides GK, Graham DR, Dinglasan RR, Yates JR III, Sinden RE (2014) Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility. Malaria J 13:315CrossRefGoogle Scholar
  43. Wass MN, Stanway R, Blagborough AM, Lal K, Prieto JH, Raine D, Sternberg MJE, Talman AM, Tomley F, Yates J III, Sinden RE (2012) Proteomic analysis of Plasmodium in the mosquito: progress and pitfalls. Parasitology 139:1131–1145CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wilson Laurence, Zhang Rongjing (2012) 3d localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation. Opt Express 20(15):16735–16744CrossRefGoogle Scholar
  45. Wilson LG, Martinez VA, Schwarz-Linek J, Tailleur J, Bryant G, Pusey PN, Poon WCK (2011) Differential dynamic microscopy of bacterial motility. Phys Rev Lett 106(1):018101CrossRefPubMedGoogle Scholar
  46. Wilson LG, Carter LM, Reece SE (2013) High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms. Proc Natl Acad Sci USA 110(47):18769–18774CrossRefPubMedPubMedCentralGoogle Scholar
  47. World Health Organization (2014) World malaria report. WHO PressGoogle Scholar
  48. Wright KJ, Seed PC, Hultgren SJ (2005) Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73(11):7657–7668CrossRefPubMedPubMedCentralGoogle Scholar
  49. Xu W, Jericho MH, Meinertzhagen IA, Kreuzer HJ (2001) Digital in-line holography for biological applications. Proc Natl Acad Sci 98(20):11301–11305CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • K. L. Thornton
    • 1
  • R. C. Findlay
    • 1
    • 2
  • P. B. Walrad
    • 2
  • L. G. Wilson
    • 1
  1. 1.Department of PhysicsUniversity of YorkHeslington, YorkEngland
  2. 2.Centre for Immunology and Infection, Department of BiologyUniversity of YorkHeslington, YorkEngland

Personalised recommendations