Advertisement

Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes

  • Robert D. Barker
  • Laura E. McKinley
  • Simon TitmussEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 915)

Abstract

The principles of neutron reflectivity and its application as a tool to provide structural information at the (sub-) molecular unit length scale from models for bacterial membranes are described. The model membranes can take the form of a monolayer for a single leaflet spread at the air/water interface, or bilayers of increasing complexity at the solid/liquid interface. Solid-supported bilayers constrain the bilayer to 2D but can be used to characterize interactions with antimicrobial peptides and benchmark high throughput lab-based techniques. Floating bilayers allow for membrane fluctuations, making the phase behaviour more representative of native membranes. Bilayers of varying levels of compositional accuracy can now be constructed, facilitating studies with aims that range from characterizing the fundamental physical interactions, through to the characterization of accurate mimetics for the inner and outer membranes of Gram-negative bacteria. Studies of the interactions of antimicrobial peptides with monolayer and bilayer models for the inner and outer membranes have revealed information about the molecular control of the outer membrane permeability, and the mode of interaction of antimicrobials with both inner and outer membranes.

Keywords

Neutron reflectivity Lipid membrane Structure Biomimetic Antimicrobial Lipopolysaccharide 

Notes

Acknowledgments

We acknowledge the STFC for the award of beamtime at ISIS (RB1220350) and the Institut Laue-Langevin (8-02-637/8-02-682/8-02-704), and the EPSRC for a studentship to Laura McKinley (EP/L504956/1).

References

  1. Barker RD (2011) al-PC SAM approach to supported bilayers: Developing a novel model membrane system. PhD thesis, School of Chemistry, University of BathGoogle Scholar
  2. Bello G, Bodin A, Lawrence MJ, Barlow D, Mason AJ, Barker RD, Harvey RD (2015) The influence of rough lipopolysaccharide structure on molecular interactions with mammalian antimicrobial peptides. BBA: Biomembranes 1858(2):197–209. doi: 10.1016/j.bbamem.2015.11.007 CrossRefGoogle Scholar
  3. Carr M (2015) Advancing our understanding of lipid bilayer interaction: a molecular dynamics study. PhD thesis, School of Physics and Astronomy, University of EdinburghGoogle Scholar
  4. Charitat T, Bellet-Amalric E, Fragneto G, Graner F (1999) Adsorbed and free lipid bilayers at the solid-liquid interface. Eur Phys J B 8:583–593CrossRefGoogle Scholar
  5. Chen L, Gao L, Fang W, Golubovic L (2012) How the antimicrobial peptides kill bacteria: computational physics insights. Commun Comput Phys 11(3):709–725CrossRefGoogle Scholar
  6. Clifton LA, Sanders M, Kinane C, Arnold T, Edler KJ, Neylon C, Green RJ, Frazier RA (2012) The role of protein hydrophobicity in thionin-phospholipid interactions: a comparison of α1 and α2-purothionin adsorbed anionic phospholipid monolayers. PCCP 14:13569–13579Google Scholar
  7. Clifton LA, Skoda MWA, Daulton EL, Hughes AV, Le Brun AP, Lakey JH, Holt SA (2013) Asymmetric phospholipid: lipopolysaccharide bilayers; a gram-negative bacterial outer membrane mimic. J R Soc Interface 10(89):20130810Google Scholar
  8. Clifton LA, Holt SA, Hughes AV, Daulton EL, Arunmanee W, Frank H, Khalid S, Jefferies D, Charlton TR, Webster JRP, Kinane CJ, Lakey JH (2015a) An accurate in vitro model of the E. coli envelope. Angew Chem Int Ed 54(41):11952–11955Google Scholar
  9. Clifton LA, Skoda MWA, Le Brun AP, Ciesielski F, Kuzmenko I, Holt SA, Lakey JH (2015b) Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir 31(1):404–412. doi: 10.1021/la504407v CrossRefPubMedGoogle Scholar
  10. Fernandez DL, Le Brun AP, Lee TH, Bansal P, Aguilar MI, James M, Separovic F (2012a) Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers. Eur Biophys JGoogle Scholar
  11. Fernandez DL, Le Brun AP, Whitwell TC, Sani MA, James M, Separovic F (2012b) The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys 14:15739–15751Google Scholar
  12. Fragneto G, Graner F, Charitat T, Dubos P, Bellet-Amalric E (2000) Interaction of the third helix of antennapedia homeodomain with a deposited phospholipid bilayer: a neutron reflectivity structural study. Langmuir 16(10):4581–4588CrossRefGoogle Scholar
  13. Fragneto G, Charitat T, Daillant J (2012) Floating lipid bilayers: models for physics and biology. Eur Biophys J 41:863–874CrossRefPubMedGoogle Scholar
  14. Gidalevitz D, Ishitsuka Y, Muresan AS, Konvalov O, Waring AJ, Lehrer RI, Lee KYC (2003) Interaction of antimicrobial peptide protegrin with biomembranes. PNAS 100(11):6302–6307CrossRefPubMedPubMedCentralGoogle Scholar
  15. Heinrich F, Lösche M (2014) Zooming in on disordered systems: neutron reflection studies of proteins associated with fluid membranes. Biochim Biophys Acta 1838:2341–2349CrossRefPubMedPubMedCentralGoogle Scholar
  16. Helfrich W (1978) Steric interaction of fluid membranes in multilayer systems. Z Naturforsch 33a:305–315Google Scholar
  17. Hughes AV, Goldar A, Gerstenberg MC, Roser SJ, Bradshaw JP (2002) A hybrid sam phospholipid approach to fabricating a free supported lipid bilayer. PCCP 4:2371–2378CrossRefGoogle Scholar
  18. Hughes AV, Howse JR, Dabkowska A, Jones RAL, Lawrence MJ, Roser SJ (2008) Floating lipid bilayers deposited in chemically grafted phosphatidylcholine surfaces. Langmuir 24:1989–1999CrossRefPubMedGoogle Scholar
  19. Hughes AV, Holt SA, Daulton W, Soliakov A, Charlton TR, Roser SJ, Lakey JH (2014) High coverage fluid-phase floating bilayers supported by ω-thiolipid self-assembled monolayers. J R Soc Interface 11(20140):447Google Scholar
  20. Illya G, Deserno M (2008) Coarse-grained simulation studies of peptide-induced pore formation. Biophys J 95:4163–4173CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jagalski V, Barker RD, Thygesen MB, Gotfryd K, Krüger MB, Shi L, Maric S, Bovet N, Moulin M, Haertlin M, Pomorski TG, Loland CJ, Cárdenas M (2015) Grafted biomembranes containing membrane proteins—the case of the leucine transporter. Soft Matter 11:7707–7711CrossRefPubMedGoogle Scholar
  22. Jepson AK (2014) E. coli motility and growth: a biophysical study. PhD thesis, School of Physics, University of EdinburghGoogle Scholar
  23. Jepson AK, Schwarz-Linek J, Ryan L, Ryadnov MG, Poon WCK (2016) What is the ‘minimum inhibitory concentration’ (MIC) of pexiganan acting on Escherichia coli? In: Leake MC (ed.), Biophysics of infection. A cautionary case study. Springer. doi:  10.1007/978-3-319-32189-9_4
  24. Junghans A, Watkins EB, Barker RD, Singh S, Smith HL, Pocivavsek L, Majewski J (2015) Analysis of biosurfaces by neutron reflectometry: from simple to complex interfaces. Biointerphases 10(019):014Google Scholar
  25. Le Brun AP, Clifton LA, Halbert CE, Lin B, Meron M, Holden PJ, Lakey JH, Holt SA (2013) Structural characterization of a model gram-negative bacterial surface using lipopolysaccharides from rough strains of escherichia coli. Biomacromolecules 14(6):2014–2022. doi: 10.1021/bm400356m, URL http://dx.doi.org/10.1021/bm400356m, pMID: 23617615
  26. Majkrzak CF, Berk NF, Dura J, Satija SK, Karim A, Pedulla J, Deslattes RD (1998) Phse determination and inversion in specular neutron reflectometry. Phys B 248:338–342CrossRefGoogle Scholar
  27. Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membranes pores, domains, stalks and curves. Biochim Biophys Acta 1788:149–168CrossRefPubMedGoogle Scholar
  28. McKinley LE (2015) Reports on 8-02-704 and 8-02-709. Technical report, Institut Laue LangevinGoogle Scholar
  29. Melo MN, Castanaho MARB (2012) The mechanism of action of antimicrobial peptides: lipid vesicles vs. bacteria. Front Immunol 3:1–4CrossRefGoogle Scholar
  30. Pabst G, Kucerka N, Nieh MP, Rheinstädter MC, Katsara J (2010) Applications of neutron and x-ray scattering to the study of biological model membranes. Chem Phys Lipids 163:460–479CrossRefPubMedGoogle Scholar
  31. Schekhar P, Nanda H, Lösche M, Heinrich F (2011) Continuous distribution model for the investigation of complex molecular architectures near interfaces with scattering techniques. J Appl Phys 110(102):216Google Scholar
  32. Schneck E, Papp-Szabo E, Quinn BE, Konovalov OV, Beveridge TJ, Pink DA, Tanaka M (2009) Calcium ions induce collapse of charded o-side chains of lipopolysaccharides from pseudomonas aeruginosa. J R Soc Interface 6:S671–S678CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schneck E, Schubert T, Konovalov BE Quinn OV, Gutsmann T, Brandenburg K, Olivera RG, Pink DA, Tanaka M (2010) Quantitative determination of ion distributions in bacterial lipopolysaccharide membranes by grazing-incidence x-ray fluorescence. PNAS 107:9147–9151Google Scholar
  34. Titmuss S (2013) Report on 8-02-684. Technical report, Institut Laue LangeviGoogle Scholar
  35. Wacklin HP (2010) Neutron reflection from supported lipid membranes. Curr Opin Colloid Interface Sci 15:445–454CrossRefGoogle Scholar
  36. Woo HJ, Wallqvist A (2011) Spontaneous buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide maganin 2: a coarse-grained simulation study. J Phys Chem B 115:8122–8129CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Robert D. Barker
    • 1
    • 3
  • Laura E. McKinley
    • 2
  • Simon Titmuss
    • 2
    Email author
  1. 1.Institut Laue-LangevinGrenoble Cedex 9France
  2. 2.School of Physics and AstronomyUniversity of EdinburghEdinburghScotland
  3. 3.School of Science and EngineeringUniversity of DundeeDundeeUK

Personalised recommendations