The Discrete Logarithm Problem

  • René SchoofEmail author


For large prime numbers p, computing discrete logarithms of elements of the multiplicative group (ZpZ) is at present a very difficult problem. The security of certain cryptosystems is based on the difficulty of this computation. In this expository paper we discuss several generalizations of the discrete logarithm problem and we describe various algorithms to compute discrete logarithms.


  1. 1.
    Barbulescu, R., Gaudry, P., Joux, A. and Thomé, E.: A quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic, In Nguyen, P., Oswald, E. (Eds) Eurocrypto 2014, LNCS 8441, 1–16, Springer 2014.Google Scholar
  2. 2.
    Belding, J.V.: A Weil pairing on the p-torsion of ordinary elliptic curves over \(K[\varepsilon ]\), J. of Number Theory, 128 (2008), 1874–1888.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buchmann, J., Jacobson, M. and Teske, E.: On some computational problems in finite abelian groups, Math. Comp. 66 (1997), 1663–1687.Google Scholar
  4. 4.
    Canfield, E.R., Pomerance C. and Erdős, P.: On a problem of Oppenheim concerning ‘Factorisation Numerorum’, J. Number Theory 17 (1981), 1–28.Google Scholar
  5. 5.
    Cheng, Q., Wan, D. and Zhuang, J: Traps to the BGJT-algorithm for discrete logarithms, LMS Journal of Computation and Mathematics 17 (2014), 218–229.Google Scholar
  6. 6.
    Diffie, W. and Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22 (1976), 587–594.Google Scholar
  7. 7.
    Göloğlu, F., Granger, R., McGuire, G. and Zumbrägel, J.: On the function field sieve and the impact of higher splitting probabilities. In Canetti, R. and Garay, J. editors, Advances in Cryptology—CRYPTO 2013, LNCS 8043, 109–128. Springer 2013.Google Scholar
  8. 8.
    Granger, R., Kleinjung, T. and Zumbrägel, J.: On the discrete logarithm problem in finite fields of fixed characteristic, Cryptology ePrint Archive: Report 2015/685.Google Scholar
  9. 9.
    Knuth, Donald E.: The Art of Computer Programming, vol. II: Seminumerical Algorithms, Addison-Wesley 1969.zbMATHGoogle Scholar
  10. 10.
    Lenstra, H.W.: Finding isomorphisms between finite fields, Math. Comp. 56 (1991), 329–347.Google Scholar
  11. 11.
    Lenstra, H.W. and Silverberg, A.: Roots of unity in orders, Foundations of Computational Mathematics, to appear (2016).Google Scholar
  12. 12.
    Menezes, A., Okamoto, T., Vanstone, S. A.: Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Transactions on Information Theory 39 (1993), 1639–1646.Google Scholar
  13. 13.
    Miller, G.: Riemann’s Hypothesis and tests for primality J. of Computer and System science 13 (1976), 300–317.Google Scholar
  14. 14.
    Miller, V.: The Weil pairing, and its efficient calculation, J. Cryptology 17 (2004), 235–261.Google Scholar
  15. 15.
    Panario, D., Gourdon, X. and Flajolet, P.: An analytic approach to smooth polynomials over finite fields. In J. Buhler, editor, Algorithmic Number Theory, Proceedings of the ANTS-III conference, 1423, 226–236. Springer 1998.Google Scholar
  16. 16.
    Pohlig, S. and Hellman, M.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Inform. Theory IT-24 (1978), 106–110.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pollard, J.: Monte Carlo methods for index computation mod p, Mathematics of Computation, 32 (1978), 918–924.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Satoh T. and Araki, K.: Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, Comment. Math. Univ. St. Paul. (1998), 81–92.Google Scholar
  19. 19.
    Semaev, I.A.: Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p, Math. Comp. 67 (1998), 353–356.Google Scholar
  20. 20.
    Shanks, D.: Class number, a theory of factorization and genera. In Proc. Symp. Pure Math. 20 (1971), 415–440. AMS, Providence, R.I.Google Scholar
  21. 21.
    Silverman, J.H.: The arithmetic of elliptic curves, Graduate Texts in Mathematics 106, 2nd Ed. Springer–Verlag, 2009.CrossRefGoogle Scholar
  22. 22.
    Smart, N.: The discrete logarithm problem on elliptic curves of trace one, J. Cryptology 12 (1999), 193–196.Google Scholar
  23. 23.
    Xiao, D., Zhuang, J. and Cheng, Q.: Factor base discrete logarithms in Kummer Extensions, Cryptology ePrint Archive: Report 2015/859.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations