Advertisement

GPU and FPGA Parallelization of Fuzzy Cellular Automata for the Simulation of Wildfire Spreading

  • Vasileios G. Ntinas
  • Byron E. Moutafis
  • Giuseppe A. Trunfio
  • Georgios Ch. SirakoulisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9574)

Abstract

This paper presents a Fuzzy Cellular Automata (FCA) model with the aim to cope with the computational complexity and data uncertainties that characterize the simulation of wildfire spreading on real landscapes. Moreover, parallel implementations of the proposed FCA model, on both GPU and FPGA, are discussed and investigated. According to the results, the parallel models exhibit significant speedups over the corresponding sequential algorithm. As a possible application, the proposed model could be embedded on a portable electronic system for real-time prediction of fire spread scenarios.

Keywords

Forest fire spreading Cellular Automata Fuzzy theory GPU implementation Hardware Parallelization 

References

  1. 1.
    Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Technical report INT-115, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT (1972)Google Scholar
  2. 2.
    Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecol. Model. 99, 87–97 (1997)CrossRefGoogle Scholar
  3. 3.
    Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm for simulating wildfire spread through cellular automata. ACM Trans. Model. Comput. Simul. 22, 1–26 (2011)CrossRefGoogle Scholar
  4. 4.
    Avolio, M.V., Di Gregorio, S., Trunfio, G.A.: A randomized approach to improve the accuracy of wildfire simulations using cellular automata. J. Cell. Automata 9(3–4), 209–223 (2014)MathSciNetGoogle Scholar
  5. 5.
    Di Gregorio, S., Filippone, G., Spataro, W., Trunfio, G.A.: Accelerating wildfire susceptibility mapping through GPGPU. J. Parallel Distrib. Comput. 73(8), 1183–1194 (2013)CrossRefGoogle Scholar
  6. 6.
    Progias, P., Sirakoulis, G.C.: An FPGA processor for modelling wildfire spreading. Math. Comput. Model. 57, 1436–1452 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mraz, M., Zimic, N., Lapanja, I., Bajec, I.: Fuzzy cellular automata: from theory toapplications. In: 12th IEEE International Conference on Tools with Artificial Intelligence, pp. 320–323 (2000)Google Scholar
  8. 8.
    von Neumann, J.: Theory of Self Reproducing Automata. University of Illinois Press, Urbana (1966)Google Scholar
  9. 9.
    Kalogeiton, V.S., Papadopoulos, D.P., Georgilas, I.P., Sirakoulis, G.C., Adamatzky, A.I.: Cellular automaton model of crowd evacuation inspired by slime mould. Int. J. Gen. Syst. 43(4), 354–391 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Saravakos, P., Sirakoulis, G.C.: Modeling behavioral traits of employees in a workplace with cellular automata. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol. 8385, pp. 689–698. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Sirakoulis, G., Adamatzky, A.: Robots and Lattice Automata. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  12. 12.
    Was, J., Sirakoulis, G.C., Bandini, S.: Cellular Automata, Proceedings of 11th International Conference on Cellular Automata for Research and Industry, ACRI 2014, vol. 8751. Springer, Heidelberg (2014)zbMATHGoogle Scholar
  13. 13.
    Artés, T., Cencerrado, A., Corts, A., Margalef, T.: Enhancing computational efficiency on forest fire forecasting by time-aware Genetic Algorithms. J. Supercomput. 71(5), 1869–1881 (2015)CrossRefGoogle Scholar
  14. 14.
    Xue, H., Gu, F., Hu, X.: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation. ACM Trans. Model. Comput. Simul. 22(4), 23 (2012)CrossRefGoogle Scholar
  15. 15.
    Topa, P.: Cellular automata model tuned for efficient computation on GPU with global memory cache. In: PDP 2014 Proceedings, pp. 380–383 (2014)Google Scholar
  16. 16.
    Was, J., Mrz, H., Topa, P.: GPGPU computing for microscopic simulations of crowd dynamics, Computing and Informatics (2014, in press)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vasileios G. Ntinas
    • 1
  • Byron E. Moutafis
    • 1
  • Giuseppe A. Trunfio
    • 2
  • Georgios Ch. Sirakoulis
    • 1
    Email author
  1. 1.Department of Electrical and Computer Engineering, School of EngineeringDemocritus University of Thrace, University CampusXanthiGreece
  2. 2.DADUUniversity of SassariAlgheroItaly

Personalised recommendations