Advertisement

Generating Computational Taxonomy for Business Models of the Digital Economy

  • Chao WuEmail author
  • Yi Cai
  • Mei Zhao
  • Songping Huang
  • Yike Guo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9645)

Abstract

We propose to design a semi-automatic ontology building approach to create a new taxonomy of the digital economy based on a big data approach – harvesting data by scraping publicly available Web pages of digitally-focused business. The method is based on a small core ontology which provides the basic level concepts in business model. We try to use computational approaches to extracting Web data towards generating concepts and taxonomy of business models in the digital economy, which can help consequently address the important question while exploring new business models in big data era.

Keywords

Business model taxonomy Ontology generation Computational taxonomy 

Notes

Acknowledgment

The work presented in this paper is supported by NEMODE Network + Pilot Study: A Computational Taxonomy of Business Models of the Digital Economy (P55805).

References

  1. 1.
    Mitchell, G.: How many petabytes is the internet? Focus Science and Technology Magazine (2013). http://sciencefocus.com/qa/how-many-terabytes-data-are-internet
  2. 2.
    Xiaoguang, Q., Davison, B.D.: Web page classification: features and algorithms. ACM Comput. Surv. 41(2) (2009). Article 12Google Scholar
  3. 3.
    Bartelt, A., Lamersdorf, W.: A multi-criteria taxonomy of business models in electronic commerce. In: Fiege, L., Mühl, G., Wilhelm, U.G. (eds.) WELCOM 2001. LNCS, vol. 2232, pp. 193–205. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Lambert, S.C.: Do we need a ‘real’ taxonomy of e-business models? School of commerce research paper series 06-06 (2006)Google Scholar
  5. 5.
    Chen, W.H., Cai, Y., Leung, H.F., Li, Q.: Generating ontologies with basic level concepts from folksonomies. Procedia Comput. Sci. 1(1), 573–581 (2010)CrossRefGoogle Scholar
  6. 6.
    Gruber, T.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  7. 7.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001). Special Issue on the Semantic WebCrossRefGoogle Scholar
  8. 8.
    Kietz, J.U., Maedche, A., Volz, R.: A method for semi-automatic ontology acquisition from a corporate intranet. In: Aussenac-Gilles, N., Biebow, B., Szulman, S. (eds.) CEUR Workshop Proceedings, EKAW 2000 Workshop on Ontologies and Texts, Juan-Les-Pins, France, Amsterdam, The Netherlands, vol. 51, pp. 4.1–4.14 (2000). http://CEUR-WS.org/Vol-51
  9. 9.
    Faure, D., Poibeau, T.: First experiments of using semantic knowledge learned by ASIUM for information extraction task using INTEX. In: Staab, S., Maedche, A., Nedellec, C., Wiemer-Hastings, P. (eds.) Proceedings of the Workshop on Ontology Learning, 14th European Conference on Artificial Intelligence ECAI 2000, Berlin, Germany (2000)Google Scholar
  10. 10.
    Morin, E.: Automatic acquisition of semantic relations between terms from technical corpora. In: Proceedings of the Fifth International Congress on Terminology and Knowledge Engineering (TKE 1999). TermNet-Verlag, Vienna (1999)Google Scholar
  11. 11.
    Hahn, U., Schulz, S.: Towards very large terminological knowledge bases: a case study from medicine. In: Hamilton, H.J. (ed.) Canadian AI 2000. LNCS (LNAI), vol. 1822, pp. 176–186. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., Boyes-Braem, P.: Basic objects in natural categories. Cogn. Psychol. 8(3), 382–439 (1976)CrossRefGoogle Scholar
  13. 13.
    Murphy, G.: The Big Book of Concepts. Bradford Book, Cambridge (2004)Google Scholar
  14. 14.
    Zhou, W., Liu, Z., Zhao, Y., Xu, L., Chen, G., Wu, Q., Qiang, Y.: A semi-automatic ontology learning based on wordnet and event-based natural language processing. In: 2006 International Conference on Information and Automation, ICIA 2006, pp. 240–244. IEEE, December 2006Google Scholar
  15. 15.
  16. 16.
    Schultz, J., Liberman, M.: Topic detection and tracking using idf-weighted cosine coefficient. In: Broadcast News Workshop 1999 Proceedings, p. 189 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Chao Wu
    • 1
    Email author
  • Yi Cai
    • 2
  • Mei Zhao
    • 2
  • Songping Huang
    • 2
  • Yike Guo
    • 1
  1. 1.Data Science InstituteImperial College LondonLondonUK
  2. 2.School of Software EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations