TSCluWin: Trajectory Stream Clustering over Sliding Window

  • Jiali Mao
  • Qiuge Song
  • Cheqing JinEmail author
  • Zhigang Zhang
  • Aoying Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9643)


The popularity of GPS-embedded devices facilitates online monitoring of moving objects and analyzing movement behaviors in a real-time manner. Trajectory clustering acts as one of the most important trajectory analysis tasks, and the researches in this area have been studied extensively in the recent decade. Due to the rapid arrival rate and evolving feature of stream data, little effort has been devoted to online clustering trajectory data streams. In this paper, we propose a framework that consists of two phases, including a micro-clustering phase where a number of micro-clusters represented by compact synopsis data structures are incrementally maintained, and a macro-clustering phase where a small number of macro-clusters are generated based on micro-clusters. Experimental results show that our proposal is both effective and efficient to handle streaming trajectories without compromising the quality.


Line Segment Trajectory Data Incremental Cluster Stream Cluster DBScan Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our research is supported by the 973 program of China (No. 2012CB316203), NSFC (U1501252, U1401256, 61370101 and 61402180), Shanghai Knowledge Service Platform Project (No. ZF1213), Innovation Program of Shanghai Municipal Education Commission(14ZZ045), and Natural Science Foundation of ShanghaiNo. 14ZR1412600).


  1. 1.
    Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB, pp. 81–92 (2003)Google Scholar
  2. 2.
    Aggarwal, C.C., Yu, P.S.: A framework for clustering uncertain data streams. In: ICDE, pp. 150–159 (2008)Google Scholar
  3. 3.
    Babcock, B., Datar, M., Motwani, R., Callaghan, L.: Maintaining variance and k-medians over data stream windows. In: PODS, pp. 234–243 (2003)Google Scholar
  4. 4.
    Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over sliding windows. In: SODA, pp. 635–644 (2002)Google Scholar
  5. 5.
    Duan, X., Jin, C., Wang, X., Zhou, A., Yue, K.: Real-time personalized taxi-sharing. In: DASFAA (2016)Google Scholar
  6. 6.
    Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96, 226–231 (1996)Google Scholar
  7. 7.
    Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: ACM SIGKDD, pp. 63–72. ACM (1999)Google Scholar
  8. 8.
    Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE TKDE 19(9), 1161–1174 (2007)Google Scholar
  9. 9.
    Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. PVLDB 1(1), 1068–1080 (2008)Google Scholar
  10. 10.
    Jin, C., Yu, J.X., Zhou, A., Cao, F.: Efficient clustering of uncertain data streams. Knowl. Inf. Syst. 40(3), 509–539 (2014)CrossRefGoogle Scholar
  11. 11.
    Lange, R., Dürr, F., Rothermel, K.: Efficient real-time trajectory tracking. VLDB J. 20(5), 671–694 (2011)CrossRefGoogle Scholar
  12. 12.
    Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group framework. In: ACM SIGMOD, pp. 593–604. ACM (2007)Google Scholar
  13. 13.
    Li, X., Ceikute, V., Jensen, C.S., Tan, K.: Effective online group discovery in trajectory databases. IEEE TKDE 25(12), 2752–2766 (2013)Google Scholar
  14. 14.
    Li, Y., Han, J., Yang, J.: Clustering moving objects. In: ACM SIGKDD, pp. 617–622 (2004)Google Scholar
  15. 15.
    Li, Z., Lee, J.-G., Li, X., Han, J.: Incremental clustering for trajectories. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 32–46. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Liu, H., Jin, C., Zhou, A.: Popular route planning with travel cost estimation. In: DASFAA (2016)Google Scholar
  17. 17.
    Nehme, R.V., Rundensteiner, E.A.: SCUBA: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1001–1019. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Roh, G.-P., Hwang, S.: NNCluster: an efficient clustering algorithm for road network trajectories. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 47–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Sacharidis, D., Patroumpas, K., Terrovitis, M., Kantere, V., Potamias, M., Mouratidis, K., Sellis, T.K.: On-line discovery of hot motion paths. In: EDBT, pp. 392–403(2008)Google Scholar
  20. 20.
    Tang, L.A., Zheng, Y., Yuan, J., Han, J., Leung, A., Hung, C., Peng, W.: On discovery of traveling companions from streaming trajectories. In: ICDE, pp. 186–197 (2012)Google Scholar
  21. 21.
    Wang, W., Yang, J., Muntz, R.R.: STING: a statistical information grid approach to spatial data mining. VLDB 97, 186–195 (1997)Google Scholar
  22. 22.
    Yu, Y., Wang, Q., Wang, X., Wang, H., He, J.: Online clustering for trajectory data stream of moving objects. Comput. Sci. Inf. Syst. 10(3), 1293–1317 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S.: On discovery of gathering patterns from trajectories. In: ICDE, pp. 242–253 (2013)Google Scholar
  24. 24.
    Zhou, A., Cao, F., Qian, W., Jin, C.: Tracking clusters in evolving data streams over sliding windows. Knowl. Inf. Syst. 15(2), 181–214 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jiali Mao
    • 1
  • Qiuge Song
    • 1
  • Cheqing Jin
    • 1
    Email author
  • Zhigang Zhang
    • 1
  • Aoying Zhou
    • 1
  1. 1.Institute for Data Science and Engineering, School of Computer Science and Software EngineeringEast China Normal UniversityShanghaiChina

Personalised recommendations