Advertisement

Effective Similarity Search on Indoor Moving-Object Trajectories

  • Peiquan JinEmail author
  • Tong Cui
  • Qian Wang
  • Christian S. Jensen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9643)

Abstract

In this paper, we propose a new approach to measuring the similarity among indoor moving-object trajectories. Particularly, we propose to measure indoor trajectory similarity based on spatial similarity and semantic pattern similarity. For spatial similarity, we propose to detect the critical points in trajectories and then use them to determine spatial similarity. This approach can lower the computational costs of similarity search. Moreover, it helps achieve a more effective measure of spatial similarity because it removes noisy points. For semantic pattern similarity, we propose to construct a hierarchical semantic pattern to capture the semantics of trajectories. This method makes it possible to capture the implicit semantic similarity among different semantic labels of locations, and enables more meaningful measures of semantic similarity among indoor trajectories. We conduct experiments on indoor trajectories, comparing our proposal with several popular methods. The results suggest that our proposal is effective and represents an improvement over existing methods.

Keywords

Indoor space Similarity search Trajectory 

Notes

Acknowledgement

This work is supported by the National Science Foundation of China under the grant number 61379037.

References

  1. 1.
    Dudas, P., Ghafourian, M., Karimi, H.: ONALIN: ontology and algorithm for indoor routing. In: Proceedings of MDM, pp. 720–725 (2009)Google Scholar
  2. 2.
    Jin, P., Zhang, L., Zhao, J., Zhao, L., Yue, L.: Semantics and modeling of indoor moving objects. Int. J. Multimedia Ubiquit. Eng. 7(2), 153–158 (2012)Google Scholar
  3. 3.
    Li, D., Lee, D.: A topology-based semantic location model for indoor applications. In: Proceedings of ACM GIS, pp. 1–10 (2008)Google Scholar
  4. 4.
    Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. Mobile data management. In: Proceedings of MDM, pp. 17–24 (2008)Google Scholar
  5. 5.
    Berndt, D.J., Clifford, J.: Finding patterns in time series: a dynamic programming approach. In: Advances in Knowledge Discovery and Data Mining, pp. 229–248. AAAI/MIT Press (1996)Google Scholar
  6. 6.
    Lin, B., Su, J.: One way distance: for shape based similarity search of moving object trajectories. GeoInformatica 12(2), 117–142 (2008)CrossRefGoogle Scholar
  7. 7.
    Boreczky, J.S., Rowe, L.A.: Comparison of video shot boundary detection techniques. J. Electron. Imaging 5(2), 122–128 (1996)CrossRefGoogle Scholar
  8. 8.
    Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of ICDE, pp. 673–684 (2002)Google Scholar
  9. 9.
    Chen, L., Ozsu, M.T., Oria, V.: Robust and efficient similarity search for moving object trajectories. In: Proceedings of SIGMOD, pp. 491–502 (2005)Google Scholar
  10. 10.
    Wang, Y., Yu, G., Gu, Y., Yue, D., Zhang, T.: Efficient similarity query in RFID trajectory databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 620–631. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Yuan, Y., Raubal, M.: Measuring similarity of mobile phone user trajectories- a Spatio-temporal Edit Distance method. Int. J. Geogr. Inf. Sci. 28(3), 496–520 (2014)CrossRefGoogle Scholar
  12. 12.
    Pelekis, N., Kopanakis, I., Marketos, G.: Similarity search in trajectory databases. In: Proceedings of TIME, pp. 129–140 (2007)Google Scholar
  13. 13.
    Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: Proceedings of ICDE, pp. 816–825 (2007)Google Scholar
  14. 14.
    Dodge, S., Weibel, R., Laube, P.: Exploring movement-similarity analysis of moving objects. SIGSPATIAL Special (SIGSPATIAL) 1(3), 11–16 (2009)CrossRefGoogle Scholar
  15. 15.
    Kang, H.-Y., Kim, J.-S., Li, K.-J., Hwang, J.-R.: Similarity measures for trajectory of moving objects in cellular space. In: Proceedings of ACM SAC, pp. 1325–1330 (2009)Google Scholar
  16. 16.
    Ying, J.J., Lu, E.H., Lee, W.-C., Weng, T.-C., Tseng, V.S.: Mining user similarity from semantic trajectories. In: Proc. of GIS-LBSN, pp. 19–26 (2010)Google Scholar
  17. 17.
    Ma, C., Lu, H., Shou, L., Chen, G.: KSQ: Top-k similarity query on uncertain trajectories. IEEE Trans. Knowl. Data Eng. 25(9), 2049–2062 (2013)CrossRefGoogle Scholar
  18. 18.
    Wang, H., Liu, K.: User oriented trajectory similarity search. In: Proceedings of UrbComp, pp. 103–110 (2012)Google Scholar
  19. 19.
    Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of SIGMOD, pp. 593–604 (2007)Google Scholar
  20. 20.
    Huang, C., Jin, P., Wang, H., Wang, N., Wan, S., Yue, L.: IndoorSTG: a flexible tool to generate trajectory data for indoor moving objects. In: Proceedings of MDM, pp. 341–343 (2013)Google Scholar
  21. 21.
    Manning, C.D., Raghavanm, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  22. 22.
    Schafer, M., Knapp, C., Chakraborty, S.: Automatic generation of topological indoor maps for real-time map-based localization and tracking. In: Proceedings of International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE CS (2011)Google Scholar
  23. 23.
    Zhang, D., Yang, L.T., Chen, M., Zhao, S., Guo, M., Zhang, Y.: Real-time locating systems using active RFID for internet of things. IEEE Syst. J. PP(99), 1–10 (2014)Google Scholar
  24. 24.
    Stojanović, D., Stojanović, N.: Indoor localization and tracking: methods, technologies and research challenges. Autom. Control Robot. 13(1), 57–72 (2014)Google Scholar
  25. 25.
    Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a line or its caricature. Can. Cartographer 10(2), 112–122 (1973)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Peiquan Jin
    • 1
    Email author
  • Tong Cui
    • 1
  • Qian Wang
    • 1
  • Christian S. Jensen
    • 2
  1. 1.University of Science and Technology of ChinaHefeiChina
  2. 2.Department of Computer ScienceAalborg UniversityAalborgDenmark

Personalised recommendations