Advertisement

Ensemble of HOSVD Generated Tensor Subspace Classifiers with Optimal Tensor Flattening Directions

  • Bogusław CyganekEmail author
  • Michał Woźniak
  • Dariusz Jankowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9648)

Abstract

The paper presents a modified method of building ensembles of tensor classifiers for direct multidimensional pattern recognition in tensor subspaces. The novelty of the proposed solution is a method of lowering tensor subspace dimensions by rotation of the training pattern to their optimal directions. These are obtained computing and analyzing phase histograms of the structural tensor computed from the training images. The proposed improvement allows for a significant increase of the classification accuracy which favorably compares to the best methods cited in literature.

Keywords

Pattern classification Ensemble of classifiers Tensor Higher-Order Singular Value Decomposition 

Notes

Acknowledgement

This work was supported by the Polish National Science Centre under the grant no. DEC-2013/09/B/ST6/02264. This work was supported by EC under FP7, Coordination and Support Action, Grant Agreement Number 316097, ENGINE – European Research Centre of Network Intelligence for Innovation Enhancement (http://engine.pwr.wroc.pl/). All computer experiments were carried out using computer equipment sponsored by ENGINE project.

References

  1. 1.
    Cichocki, A., Zdunek, R., Amari, S.: Nonnegative matrix and tensor factorization. IEEE Signal Process. Mag. 25(1), 142–145 (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cyganek, B.: A real-time vision system for traffic signs recognition invariant to translation, rotation and scale. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 278–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Cyganek, B.: Ensemble of tensor classifiers based on the higher-order singular value decomposition. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 578–589. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Cyganek, B.: Embedding of the extended euclidean distance into pattern recognition with higher-order singular value decomposition of prototype tensors. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012. LNCS, vol. 7564, pp. 180–190. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Cyganek, B., Object Detection and Recognition in Digital Images: Theory and Practice, Wiley (2013)Google Scholar
  6. 6.
    Cyganek, B., Krawczyk, B., Woźniak, M.: Multidimensional data classification with chordal distance based kernel and support vector machines. Eng. Appl. Artif. Intell. 46, 10–22 (2015). Elsevier, Part ACrossRefGoogle Scholar
  7. 7.
    Cyganek, B., Woźniak, M.: An improved vehicle logo recognition using a classifier ensemble based on pattern tensor representation and decomposition. New Gener. Comput. 33(4), 389–408 (2015). SpringerCrossRefGoogle Scholar
  8. 8.
    Decoste, D., Schölkopf, B.: Training invariant support vector machines. Mach. Learn. 46(1–3), 161–190 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Grandvalet, Y.: Bagging equalizes influence. Mach. Learn. 55, 251–270 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hull, J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)CrossRefGoogle Scholar
  11. 11.
    Kittler, J., Hatef, M., Duing, R.P.W., Matas, J.: On Combining Classifiers. IEEE PAMI 20(3), 226–239 (1998)CrossRefGoogle Scholar
  12. 12.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Krawczyk, B.: One-class classifier ensemble pruning and weighting with firefly algorithm. Neurocomputing 150, 490–500 (2015)CrossRefGoogle Scholar
  14. 14.
    Kuncheva, L.I.: Combining Pattern Classifiers, Methods and Algorithms. Wiley Interscience, Chichester (2005)zbMATHGoogle Scholar
  15. 15.
    Lathauwer, de L.: Signal processing based on multilinear algebra. Ph.D dissertation, Katholieke Universiteit Leuven (1997)Google Scholar
  16. 16.
    de Lathauwer, L., de Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE Speech Image Process. 86(11), 2278–2324 (1998)Google Scholar
  18. 18.
    Letexier, D., Bourennane, S., Blanc-Talon, J.: Main flattening directions and Quadtree decomposition for multiway Wiener filtering. Signal, Image Video Process. 1(3), 253–265 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Maji, S., Malik, J.: Fast and Accurate Digit Classification. Technical report no. UCB/EECS-2009-159, University of California at Berkeley (2009)Google Scholar
  20. 20.
    Maji, S., Berg, A.C., Malik, J.: Efficient classification for additive kernel SVMs. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 66–77 (2013)CrossRefGoogle Scholar
  21. 21.
    Marot, J., Fossati, C., Bourennane, S.: About advances in tensor data denoising methods. EURASIP J. Adv. Signal Process. 2008(1), 1–12 (2008)CrossRefzbMATHGoogle Scholar
  22. 22.
    Polikar, R.: Ensemble Based Systems in Decision Making. IEEE Circuits and Systems Magazine 6(3), 21–45 (2006)CrossRefGoogle Scholar
  23. 23.
    Savas, B., Eldén, L.: Handwritten digit classification using higher order singular value decomposition. Pattern Recogn. 40, 993–1003 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, London (2009)zbMATHGoogle Scholar
  25. 25.
    Vasilescu, M.O., Terzopoulos, D.: Multilinear analysis of image ensembles: tensorfaces. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 447–460. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Woźniak, M.: A hybrid decision tree training method using data streams. Knowl. Inf. Syst. 29(2), 335–347 (2011)CrossRefGoogle Scholar
  27. 27.
    Woźniak, M., Grana, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16(1), 3–17 (2014)CrossRefGoogle Scholar
  28. 28.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bogusław Cyganek
    • 1
    • 2
    Email author
  • Michał Woźniak
    • 2
  • Dariusz Jankowski
    • 2
  1. 1.AGH University of Science and TechnologyKrakówPoland
  2. 2.Wroclaw University of TechnologyWrocławPoland

Personalised recommendations