Advertisement

Classification of Melanoma Presence and Thickness Based on Computational Image Analysis

  • Javier Sánchez-MonederoEmail author
  • Aurora Sáez
  • María  Pérez-Ortiz
  • Pedro Antonio Gutiérrez
  • Cesar Hervás-Martínez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9648)

Abstract

Melanoma is a type of cancer that occurs on the skin. Only in the US, 50,000–100,000 patients are yearly diagnosed with melanoma. Five year survival rate highly depends on early detection, varying between 99 % and 15 % depending on the melanoma stage. Melanoma is typically identified with a visual inspection and lately confirmed and classified by a biopsy. In this work, we propose a hybrid system combining features which describe melanoma images together with machine learning models that learn to distinguish melanoma lesions. Although previous works distinguish melanoma and non-melanoma images, those works focus only in the binary case. Opposed to this, we propose to consider finer classification levels within a five class learning problem. We evaluate the performance of several nominal and ordinal classifiers using four performance metrics to provide highlights of several aspects of classification performance, achieving promising results.

Keywords

Melanoma Feature extraction Dermoscopic image Computer vision Machine learning Multi-class Ordinal classification Imbalanced classification 

References

  1. 1.
    Institute, N.C.:Seer stat fact sheets: melanoma of the skin (2015). http://seer.cancer.gov/statfacts/html/melan.html. Accessed 15 December 2015
  2. 2.
    For Research on Cancer. World Health Organization, I.A.:Cancer factsheet. Malignant melanoma of skin (2015). http://eco.iarc.fr/eucan/Cancer.aspx?Cancer=20. Accessed 15 Dec 2015
  3. 3.
    Pizzichetta, M., Argenziano, G., Talamini, R., Piccolo, D., Gatti, A., Trevisan, G., Sasso, G., Veronesi, A., Carbone, A., Peter Soyer, H.: Dermoscopic criteria for melanoma in situ are similar to those for early invasive melanoma. Cancer 91, 992–997 (2001)CrossRefGoogle Scholar
  4. 4.
    Herman, C.: Emerging technologies for the detection of melanoma: achieving better outcomes. Clin. Cosmet. Invest. Dermatol. 5, 195–212 (2012)CrossRefGoogle Scholar
  5. 5.
    Maglogiannis, I., Doukas, C.N.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans. Inf.Technol. Biomed. 13, 721–733 (2009)CrossRefGoogle Scholar
  6. 6.
    Garnavi, R., Aldeen, M., Bailey, J.: Computer-aided diagnosis of melanoma using border- and wavelet-based texture analysis. IEEE Trans. Inf. Technol. Biomed. 16, 1239–1252 (2012)CrossRefGoogle Scholar
  7. 7.
    Celebi, M., Kingravi, H., Uddin, B., Iyatomi, H., Aslandogan, Y., Stoecker, W., Moss, R.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31, 362–373 (2007)CrossRefGoogle Scholar
  8. 8.
    Rubegni, P., Cevenini, G., Sbano, P., Burroni, M., Zalaudek, I., Risulo, M., Dell’Eva, G., Nami, N., Martino, A., Fimiani, M.: Evaluation of cutaneous melanoma thickness by digital dermoscopy analysis: a retrospective study. Melanoma Res. 20, 212–217 (2010)Google Scholar
  9. 9.
    Amouroux, M., Blondel, W.: Non-invasive determination of Breslow index. In: Cao, M.Y. (ed.) Current Management of Malignant Melanoma, pp. 29–44. InTech (2011)Google Scholar
  10. 10.
    Stante, M., De Giorgi, V., Cappugi, P., Giannotti, B., Carli, P.: Non-invasive analysis of melanoma thickness by means of dermoscopy: a retrospective study. Melanoma Res. 11, 147–152 (2001)CrossRefGoogle Scholar
  11. 11.
    Lens, M.B., Nathan, P., Bataille, V.: Excision margins for primary cutaneous melanoma: updated pooled analysis of randomized controlled trials. Arch. Surg. 142, 885–891 (2007)CrossRefGoogle Scholar
  12. 12.
    Argenziano, G., Soyer, H., et al.: Interactive Atlas of Dermoscopy. EDRA-Medical Publishing and New Media, Milan (2000)Google Scholar
  13. 13.
    Sáez, A., Serrano, C., Acha, B.: Model-based classification methods of global patterns in dermoscopic images. IEEE Trans. Med. Imaging 33, 1137–1147 (2014)CrossRefGoogle Scholar
  14. 14.
    Sáez, A., Mendoza, C.S., Acha, B., Serrano, C.: Development and evaluation of perceptually adapted colour gradients. IET Image Proc. 7, 355–363 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Soyer, H., Argenziano, G., Hofmann-Wellenhof, R., Johr, R.: Color Atlas of Melanocytic Lesions of the Skin. Springer, Heidelberg (2010)Google Scholar
  16. 16.
    Weismann, K., Lorentzen, H.F.: Dermoscopic color perspective. Arch. Dermatol. 142, 1250 (2006)CrossRefGoogle Scholar
  17. 17.
    Seidenari, S., Pellacani, G., Grana, C.: Computer description of colours in dermoscopic melanocytic lesion images reproducing clinical assessment. Br. J. Dermatol. 149, 523–529 (2003)CrossRefGoogle Scholar
  18. 18.
    Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Delfino, M.: Clinical and dermatoscopic criteria for the preoperative evaluation of cutaneous melanoma thickness. J. Am. Acad. Dermatol. 40, 61–68 (1999)CrossRefGoogle Scholar
  19. 19.
    Lorentzen, H., Weismann, K., Grønhøj Larsen, F.: Dermatoscopic prediction of melanoma thickness using latent trait analysis and likelihood ratios. Acta Derm. Venereol. 81, 38–41 (2001)CrossRefGoogle Scholar
  20. 20.
    da Silva, V., Ikino, J., Sens, M., Nunes, D., Di Giunta, G.: Dermoscopic features of thin melanomas: a comparative study of melanoma in situ and invasive melanomas smaller than or equal to 1mm [características dermatoscópicas de melanomas finos: Estudo comparativo entre melanomas in situ e melanomas invasivos menores ou iguais a 1mm]. Anais Brasileiros de Dermatologia 88, 712–717 (2013)CrossRefGoogle Scholar
  21. 21.
    Otsu, N.: Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. SMC–9, 62–66 (1979). (cited By 10522)Google Scholar
  22. 22.
    Sadeghi, M., Razmara, M., Lee, T., Atkins, M.: A novel method for detection of pigment network in dermoscopic images using graphs. Comput. Med. Imaging Graph. 35, 137–143 (2011)CrossRefGoogle Scholar
  23. 23.
    Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC3, 610–621 (1973)CrossRefGoogle Scholar
  24. 24.
    Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59, 161–205 (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Hervás-Martínez, C., Martínez-Estudillo, F.J., Carbonero-Ruz, M.: Multilogistic regression by means of evolutionary product-unit neural networks. Neural Netw. 21, 951–961 (2008)CrossRefzbMATHGoogle Scholar
  26. 26.
    Hervás-Martínez, C., Martínez-Estudillo, F.: Logistic regression using covariates obtained by product-unit neural network models. Pattern Recogn. 40, 52–64 (2007)CrossRefzbMATHGoogle Scholar
  27. 27.
    Gutiérrez, P.A., Hervás-Martínez, C., Martínez-Estudillo, F.J.: Logistic regression by means of evolutionary radial basis function neural networks. IEEE Trans. Neural Networks 22, 246–263 (2011)CrossRefGoogle Scholar
  28. 28.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)CrossRefGoogle Scholar
  29. 29.
    Chu, W., Keerthi, S.S.: Support vector ordinal regression. Neural Comput. 19, 792–815 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gutiérrez, P., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernandez-Navarro, F., Hervás-Martínez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28, 127–146 (2016)CrossRefGoogle Scholar
  31. 31.
    Lin, H.T., Li, L.: Reduction from cost-sensitive ordinal ranking to weighted binary classification. Neural Comput. 24, 1329–1367 (2012)CrossRefzbMATHGoogle Scholar
  32. 32.
    Sun, B.Y., Li, J., Wu, D.D., Zhang, X.M., Li, W.B.: Kernel discriminant learning for ordinal regression. IEEE Trans. Knowl. Data Eng. 22, 906–910 (2010)CrossRefGoogle Scholar
  33. 33.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. Spec. Interest Group Knowl. Discov. Data Min. Explorer Newsl. 11, 10–18 (2009)Google Scholar
  34. 34.
    Fernández-Caballero, J.C., Martínez-Estudillo, F.J., Hervás-Martínez, C., Gutiérrez, P.A.: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Trans. Neural Networks 21, 750–770 (2010)CrossRefGoogle Scholar
  35. 35.
    Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: Proceedings of the 14th International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann (1997)Google Scholar
  36. 36.
    Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (ISDA 2009), pp. 283–287. IEEE Computer Society, San Mateo, CA (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Javier Sánchez-Monedero
    • 1
    Email author
  • Aurora Sáez
    • 2
  • María  Pérez-Ortiz
    • 1
  • Pedro Antonio Gutiérrez
    • 3
  • Cesar Hervás-Martínez
    • 3
  1. 1.Department of Quantitative MethodsUniversidad Loyola AndalucíaCórdobaSpain
  2. 2.Signal Theory and Communications DepartmentUniversity of SevilleSevilleSpain
  3. 3.Department of Computer Science and Numerical Analysis, Campus de Rabanales, Edificio Albert EinsteinUniversity of CórdobaCórdobaSpain

Personalised recommendations