Estimating the Maximum Power Delivered by Concentrating Photovoltaics Technology Through Atmospheric Conditions Using a Differential Evolution Approach

  • Cristobal J. CarmonaEmail author
  • F. Pulgar
  • Antonio Jesús Rivera-Rivas
  • Maria Jose del Jesus
  • J. Aguilera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9648)


The Concentrating Photovoltaic technology is focused on the generation of electricity reducing the associated costs. The main characteristics is to concentrate the sunlight in solar cells by means of optical device such as plastic or glass material. This technology could contribute with several benefits to our environmental. This paper presents a new study of the Concentrating Photovoltaic technology with the analysis of the solar spectrum considering the impact of the direct normal irrandiance spectral distribution. In this way, a estimation of regression coefficients for the spectral matching ratio multivariable regression and the average photon energy multivarible regression are obtained through a differential evolution approach. The accurate calculation of the model parameters reveals relations among the atmospheric conditions very useful for the experts.


Regression solar Data mining Differential evolution Concentrating Photovoltaic technology 



This work was supported by the Spanish Science and Innovation Department under project ENE2009-08302, by the Department of Science and Innovation of the Regional Government of Andalucia under project P09-TEP-5045, and by Spanish Ministry of Economy and Competitiveness under project TIN2015-68454-R (FEDER Founds).


  1. 1.
    Almonacid, F., Pérez-Higueras, P., Fernández, E., Rodrigo, P.: Relation between the cell temperature of a hcpv module and atmospheric parameters. Solar Energy Mater. Solar Cells 105, 322–327 (2012)CrossRefGoogle Scholar
  2. 2.
    Antón, I., Martínez, M., Rubio, F., Núñez, R., Herrero, R., Domínguez, C., Victoria, M., Askins, S., Sala, G.: Power rating of cpv systems based on spectrally corrected dni, vol. 1477, pp. 331–335 (2012)Google Scholar
  3. 3.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)zbMATHGoogle Scholar
  4. 4.
    Castro, M., Domínguez, C., Núez, R., Antón, I., Sala, G., Araki, K.: Detailed effects of wind on the field performance of a 50 kw cpv demonstration plant. In: AIP Conference Proceedings, vol. 1556, pp. 256–260 (2013)Google Scholar
  5. 5.
    Chan, N., Brindley, H., Ekins-Daukes, N.: Impact of individual atmospheric parameters on cpv system power, energy yield and cost of energy. Prog. Photovoltaics 22, 1080–1095 (2014)CrossRefGoogle Scholar
  6. 6.
    C. Domínguez, I. Askins, S. Antón, and G. Sala. Indoor characterization of cpv modules using helios 3198 solar simulator. In: 24th European Photovoltaic Solar Energy Conference and Exhibition, pp. 165–169 (2009)Google Scholar
  7. 7.
    Fan, R., Chen, P., Lin, C.: Working set selection using the second order information for training svm. J. Mach. Learn. Res. 6, 1889–1918 (2005)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Flury, B., Riedwyl, H.: Multiple linear regression. In: Multivariate Statistics, pp. 54–74 (1988)Google Scholar
  9. 9.
    Gupta, R.: CPV: expansion and bankability required. Renew. Energy focus 14(4), 12–13 (2013)CrossRefGoogle Scholar
  10. 10.
    Helmers, H., Schachtner, M., Bett, A.: Influence of temperature and irradiance on triple-junction solar subcells. Solar Energy Mater. Solar Cells 116, 144–152 (2013)CrossRefGoogle Scholar
  11. 11.
    Herrero, R., Victoria, M., Domínguez, C., Askins, S., Antón, I., Sala, G.: Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells. Prog. Photovoltaics Res. Appl. 20(4), 423–430 (2012)CrossRefGoogle Scholar
  12. 12.
    Kinsey, G., Hebert, P., Barbour, K., Krut, D., Cotal, H., Sherif, R.: Concentrator multijunction solar cell characteristics under variable intensity and temperature. Prog. Photovoltaics Res. Appl. 16(6), 503–508 (2008)CrossRefGoogle Scholar
  13. 13.
    Law, D., King, R., Yoon, H., Archer, M., Boca, A., Fetzer, C., Mesropian, S., Isshiki, T., Haddad, M., Edmondson, K., Bhusari, D., Yen, J., Sherif, R., Atwater, H., Karam, N.: Future technology pathways of terrestrial iii-v multijunction solar cells for concentrator photovoltaic systems. Solar Energy Mater. Solar Cells 94(8), 1314–1318 (2010)CrossRefGoogle Scholar
  14. 14.
    Leloux, J., Lorenzo, E., Garca-Domingo, B., Gueymard, J.A.C.: A bankable method of assessing the performance of a cpv plant. Appl. Energy 118(C), 1–11 (2014)CrossRefGoogle Scholar
  15. 15.
    Lin, C.-K., Fang, J.-Y.: Analysis of structural deformation and concentrator misalignment in a roll-tilt solar tracker. In: AIP Conference Proceedings, vol. 1556, pp. 210–213 (2013)Google Scholar
  16. 16.
    Luque, A., Sala, G., Luque-Heredia, I.: Photovoltaic concentration at the onset of its commercial deployment. Prog. Photovoltaics Res. Appl. 14(5), 413–428 (2006)CrossRefGoogle Scholar
  17. 17.
    Minemoto, T., Nakada, Y., Takahashi, H., Takakura, H.: Uniqueness verification of solar spectrum index of average photon energy for evaluating outdoor performance of photovoltaic modules. Solar Energy 83(8), 1294–1299 (2009)CrossRefGoogle Scholar
  18. 18.
    Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993)CrossRefGoogle Scholar
  19. 19.
    Nishioka, K., Takamoto, T., Agui, T., Kaneiwa, M., Uraoka, Y., Fuyuki, T.: Annual output estimation of concentrator photovoltaic systems using high-efficiency ingap/ingaas/ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data. Solar Energy Mater. Solar Cells 90(1), 57–67 (2006)CrossRefGoogle Scholar
  20. 20.
    Nofuentes, G., García-Domingo, B., Muoz, J., Chenlo, F.: Analysis of the dependence of the spectral factor of some pv technologies on the solar spectrum distribution. Appl. Energy 113, 302–309 (2014)CrossRefGoogle Scholar
  21. 21.
    Peharz, G., Ferrer Rodríguez, J., Siefer, G., Bett, A.: Investigations on the temperature dependence of cpv modules equipped with triple-junction solar cells. Prog. Photovoltaics Res. Appl. 19(1), 54–60 (2011)CrossRefGoogle Scholar
  22. 22.
    Rodrigo, P., Fernández, E., Almonacid, F., Pérez-Higueras, P.: Models for the electrical characterization of high concentration photovoltaic cells and modules: a review. Renew. Sustain. Energy Rev. 26, 752–760 (2013)CrossRefGoogle Scholar
  23. 23.
    Siefer, G., Bett, A.: Analysis of temperature coefficients for III-V multi-junction concentrator cells. Prog. Photovoltaics Res. Appl. 22(5), 515–524 (2014)CrossRefGoogle Scholar
  24. 24.
    Storn, R., Price, K.: Differential evolution: a simple and efficient adaptive scheme forglobal optimization over continuous spaces.Technical report TR-95-012 (1995)Google Scholar
  25. 25.
    Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6), 1414–1427 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cristobal J. Carmona
    • 1
    Email author
  • F. Pulgar
    • 2
  • Antonio Jesús Rivera-Rivas
    • 2
  • Maria Jose del Jesus
    • 2
  • J. Aguilera
    • 3
  1. 1.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  2. 2.Department of Computer ScienceUniversity of JaénJaénSpain
  3. 3.Department of Electronics and Automatization EngineeringUniversity of JaénJaénSpain

Personalised recommendations