Vertically-Aligned Carbon Nanotubes for Electrochemical Energy Conversion and Storage

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Vertically-aligned carbon nanotubes (VA-CNTs) have a large surface area, high electronic conductivity and electrochemical accessibility, and mechanical/chemical/electrochemical stability. These unique properties make VA-CNTs promising electrode materials for energy conversion and storage devices, including fuel cells, lithium batteries, and supercapacitors. This chapter provides an overview on recent development of VA-CNT electrodes with and without heteroatom-doping for efficient energy conversion and storage by summarizing our work on the discovery of nitrogen-doped VA-CNTs as a highly active cathode for ORR in fuel cells, vertically aligned nitrogen doped coral-like carbon fiber arrays (VA-NCCFs) as a high-performance air cathode in Li-air batteries, as well as VA-CNTs and their 3D derivatives as porous electrodes in high-performance Li-ion batteries and supercapacitors.

References

  1. 1.
    D.B. Botkin, Powering the Future: A Scientist’s Guide to Energy Independence (FT Press, 2010)Google Scholar
  2. 2.
    B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2001)CrossRefGoogle Scholar
  3. 3.
    S. Basu (ed.), Recent Trends in Fuel Cell Science and Technology (Springer, 2007)Google Scholar
  4. 4.
    A.J. Appleby, Electrocatalysis of aqueous dioxygen reduction. J. Electroanal. Chem. 357, 117–179 (1993)CrossRefGoogle Scholar
  5. 5.
    K. Kordesch, J. Gsellmann, M. Cifrain, S. Voss, V. Hacker, R.R. Aronson, C. Fabjan, T. Hejze, J. Daniel-Ivad, Intermittent use of a low-cost alkaline fuel cell-hybrid system for electric vehicles. J. Power Sources 80, 190–197 (1999)Google Scholar
  6. 6.
    X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. J. Power Sources 172, 145–154 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004)CrossRefGoogle Scholar
  8. 8.
    K. Gong, P. Yu, L. Su, S. Xiong, L. Mao, Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J. Phys. Chem. C 111, 1882–1887 (2007)CrossRefGoogle Scholar
  9. 9.
    G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotube membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998)CrossRefGoogle Scholar
  10. 10.
    J. Yang, D-J. Liu, N.N. Kariuki, L.X. Chen, Aligned carbon nanotubes with built-in FeN4 active sites for electrocatalytic reduction of oxygen. Chem. Comm. 329–331 (2008)Google Scholar
  11. 11.
    B. Winther-Jensen, O. Winther-Jensen, M. Forsyth, D.R. MacFarlane, High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode. Science 321, 671–674 (2008)CrossRefGoogle Scholar
  12. 12.
    J.P. Collman, N.K. Devaraj, R.A. Decréau, Y. Yang, Y.-L. Yan, W. Ebina, T.A. Eberspacher, C.E.D. Chidsey, A cytochrome C oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315, 1565–1568 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)CrossRefGoogle Scholar
  14. 14.
    L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115, 4823–4892 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Recent development of carbon materials for Li ion batteries. Carbon 38, 183–197 (2000)CrossRefGoogle Scholar
  16. 16.
    W. Lu, A. Goering, L. Qu, L. Dai, Lithium-ion batteries based on vertically-aligned carbon nanotube electrodes and ionic liquid electrolytes. Phys. Chem. Chem. Phys. 14, 12099–12104 (2012)CrossRefGoogle Scholar
  17. 17.
    T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16, 272–280 (2013)CrossRefGoogle Scholar
  18. 18.
    E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77, 2421–2425 (2000)CrossRefGoogle Scholar
  19. 19.
    W-C. Fang, Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors. J. Phys. Chem. C 112, 11552–11555 (2008)Google Scholar
  20. 20.
    H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater. 11, 1281–1285 (1999)CrossRefGoogle Scholar
  21. 21.
    J. van de Lagemaat, T.M. Barnes, G. Rumbles, S.E. Shaheen, T.J. Coutts, C. Weeks, I. Levitsky, J. Peltola, P. Glatkowski, Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl. Phys. Lett. 88, 233503–1–3 (2006)Google Scholar
  22. 22.
    L. Dai, D.W. Chang, J.-B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)CrossRefGoogle Scholar
  23. 23.
    L. Dai, Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications (Elsevier Science, Boston, 2006)Google Scholar
  24. 24.
    S. Iijima, Helical microtubules of graphite carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  25. 25.
    M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem. Phys. Lett. 365, 69–74 (2002)CrossRefGoogle Scholar
  26. 26.
    C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997)CrossRefGoogle Scholar
  27. 27.
    M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)CrossRefGoogle Scholar
  28. 28.
    B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A Struct. 334, 173–178 (2002)CrossRefGoogle Scholar
  29. 29.
    E.T. Thostenson, C. Li, T.-W. Chou, Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005)CrossRefGoogle Scholar
  30. 30.
    E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)CrossRefGoogle Scholar
  31. 31.
    H. Dai, Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002)CrossRefGoogle Scholar
  32. 32.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)CrossRefGoogle Scholar
  33. 33.
    X. Lv, F. Du, Y. Ma, Q. Wu, Y. Chen, Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds. Carbon 43, 2013–2032 (2005)CrossRefGoogle Scholar
  34. 34.
    S. Huang, L. Dai, A. Mau, Patterned growth and contact transfer of well-aligned carbon nanotube films. J. Phys. Chem. B 103, 4223–4227 (1999)CrossRefGoogle Scholar
  35. 35.
    Y. Ma, B. Wang, Y. Wu, Y. Huang, Y. Chen, The production of horizontally aligned single-walled carbon nanotubes. Carbon 49, 4098–4110 (2011)CrossRefGoogle Scholar
  36. 36.
    D. Yuan, L. Ding, H. Chu, Y. Feng, T.P. McNicholas, J. Liu, Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 8, 2576–2579 (2008)CrossRefGoogle Scholar
  37. 37.
    H. Chen, A. Roy, J.-B. Baek, L. Zhu, J. Qu, L. Dai, Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater. Sci. Eng. Rep. 70, 63–91 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Li, C. Papadopoulos, J. Xu, Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75, 367–369 (1999)CrossRefGoogle Scholar
  39. 39.
    C. Rao, R. Sen, B. Satishkumar, A. Govindaraj, Large aligned-nanotube bundles from ferrocene pyrolysis. Chem. Comm. 1525–1526 (1998)Google Scholar
  40. 40.
    B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Microfabrication technology: organized assembly of carbon nanotubes. Nature 416, 495–496 (2002)CrossRefGoogle Scholar
  41. 41.
    P.J.F. Harris, Carbon Nanotubes and Related Structures—New Materials for the Twenty-First Century (Cambridge University Express, Cambridge, 2001)Google Scholar
  42. 42.
    D.T. Welna, L. Qu, B.E. Taylor, L. Dai, M.F. Durstock, Vertically aligned carbon nanotube electrodes for lithium-ion batteries. J. Power Sources 196, 1455–1460 (2011)CrossRefGoogle Scholar
  43. 43.
    J. Shui, F. Du, C. Xue, Q. Li, L. Dai, Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li–O2 batteries. ACS Nano 8, 3015–3022 (2014)CrossRefGoogle Scholar
  44. 44.
    W. Lu, L. Qu, K. Henry, L. Dai, High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J. Power Sources 189, 1270–1277 (2009)CrossRefGoogle Scholar
  45. 45.
    F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A.K. Roy, Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 23, 4810–4816 (2011)CrossRefGoogle Scholar
  46. 46.
    K. Gong, P. Yu, L. Su, S. Xiong, L. Mao, Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J. Phys. Chem. C 111, 1882–1887 (2007)CrossRefGoogle Scholar
  47. 47.
    Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39, 2184–2202 (2010)CrossRefGoogle Scholar
  48. 48.
    D. Zhao, G. Yin, J. Wei, Non-platinum cathode electrocatalysts in polymer electrolyte membrane fuel cells. Prog. Chem. 21, 2753–2759 (2009)Google Scholar
  49. 49.
    L. Dai, A. Patil, X. Gong, Z. Guo, L. Liu, Y. Li, D. Zhu, Aligned nanotubes. ChemPhysChem 4, 1150–1169 (2003)CrossRefGoogle Scholar
  50. 50.
    L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Nitrogen- and boron-doped double-walled carbon nanotubes. ACS Nano 1, 494–500 (2007)CrossRefGoogle Scholar
  51. 51.
    S. Maldonado, K.J. Stevenson, Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 109, 4707–4716 (2005)CrossRefGoogle Scholar
  52. 52.
    Z. Shi, J. Zhang, Z.-S. Liu, H. Wang, D.P. Wilkinson, Current status of Ab Initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts. Electrochim. Acta 51, 1905–1916 (2006)CrossRefGoogle Scholar
  53. 53.
    W. Xiong, F. Du, Y. Liu, A. Perez, M. Supp, T.S. Ramakrishnan, L. Dai, L. Jiang, 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132, 15839–15841 (2010)CrossRefGoogle Scholar
  54. 54.
    J. Shui, M. Wang, F. Du, L. Dai, N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 1, e1400129 (2015)CrossRefGoogle Scholar
  55. 55.
    S. Wang, E. Iyyamperumal, A. Roy, Y. Xue, D. Yu, L. Dai, Vertically aligned BCN nanotubes as efficient metal-free electrocatalyst for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. 50, 11756–11760 (2011)CrossRefGoogle Scholar
  56. 56.
    D. Yu, Y. Xue, L. Dai, Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3, 2863–2870 (2012)CrossRefGoogle Scholar
  57. 57.
    E. Frackowiak, F. Béguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbon. Carbon 40, 1775–1787 (2002)CrossRefGoogle Scholar
  58. 58.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)CrossRefGoogle Scholar
  59. 59.
    D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006)Google Scholar
  60. 60.
    Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 10, A106–A110 (2007)CrossRefGoogle Scholar
  61. 61.
    H. Zhang, G. Cao, Y. Yang, Z. Gu, Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. Electrochem. Soc. 155, K19–K22 (2008)CrossRefGoogle Scholar
  62. 62.
    J. Zhao, Q.Y. Gao, C. Gu, Y. Yang, Preparation of multi-walled carbon nanotube array electrodes and its electrochemical intercalation behavior of Li ions. Chem. Phys. Lett. 358, 77–82 (2002)CrossRefGoogle Scholar
  63. 63.
    J. Chen, Y. Liu, A.I. Minett, C. Lynam, J. Wang, G. Wallace, Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem. Mater. 19, 3595–3597 (2007)CrossRefGoogle Scholar
  64. 64.
    V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. 104, 13574–13577 (2007)CrossRefGoogle Scholar
  65. 65.
    C. Masarapu, S. Subramanian, H. Zhu, B. Wei, Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv. Funct. Mater. 19, 1008–1014 (2009)CrossRefGoogle Scholar
  66. 66.
    B. Cao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem. Phys. Lett. 307, 153–157 (1999)CrossRefGoogle Scholar
  67. 67.
    J. Dahn, T. Zheng, Y. Liu, J. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995)CrossRefGoogle Scholar
  68. 68.
    Z.-H. Yang, H.-Q. Wu, Electrochemical intercalation of lithium into raw carbon nanotubes. Mater. Chem. Phys. 71, 7–11 (2001)CrossRefGoogle Scholar
  69. 69.
    G.X. Wang, J. Yao, H.K. Liu, S.X. Dou, J.H. Ahn, Growth and lithium storage properties of vertically aligned carbon nanotubes. Met. Mater. Int. 12, 413–416 (2006)CrossRefGoogle Scholar
  70. 70.
    M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 14, 1610–1613 (2002)CrossRefGoogle Scholar
  71. 71.
    H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 2664–2668 (2008)CrossRefGoogle Scholar
  72. 72.
    W-C. Fang, Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors. J. Phys. Chem. C 112, 11552–11555 (2008) Google Scholar
  73. 73.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes–the route toward applications. Science 297, 787–792 (2002)CrossRefGoogle Scholar
  74. 74.
    L. Dai, A.W.H. Mau, Controlled synthesis and modification of carbon nanotubes and C-60: carbon nanostructures for advanced polymer composite materials. Adv. Mater. 13, 899–913 (2001)CrossRefGoogle Scholar
  75. 75.
    S. Huang, L. Dai, Plasam etching for purification and controlled opening of aligned carbon nanotubes. J. Phys. Chem. B. 106, 3543–3545 (2002)CrossRefGoogle Scholar
  76. 76.
    S. Chen, J. Zhu, Q. Han, Z. Zheng, Y. Yang, X. Wang, Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst. Growth Des. 9, 4356–4261 (2009)CrossRefGoogle Scholar
  77. 77.
    Q. Wang, Z.H. Wen, J.H. Li, A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater. 16, 2141–2146 (2006)CrossRefGoogle Scholar
  78. 78.
    J.H. Jang, A. Kato, K. Machida, K. Naoi, Supercapacitor performance of hydrous ruthenium oxide electrodes prepared by electrophoretic deposition. J. Electrochem. Soc. 153, A321–A328 (2006)CrossRefGoogle Scholar
  79. 79.
    J.-S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.-D. Zhang, F.-S. Sheu, Preparation and characterization of well-aligned carbon nanotubes-ruthenium oxide nano composites for supercapacitors. Small 1, 560–565 (2005)CrossRefGoogle Scholar
  80. 80.
    W.-C. Fang, O. Chyan, C.-L. Sun, C.-T. Wu, C.-P. Chen, K.-H. Chen, L.-C. Chen, J.-H. Huang, Arrayed CNxNT-RuO2 nanocomposites directly grown on Ti-buffered Si substrate for supercapacitor application. Electrochem. Comm. 9, 239–244 (2007)CrossRefGoogle Scholar
  81. 81.
    C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 19, 5772–5777 (2009)CrossRefGoogle Scholar
  82. 82.
    N. Nagarajan, H. Humadi, I. Zhitomirsky, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochim. Acta 51, 3039–3045 (2006)CrossRefGoogle Scholar
  83. 83.
    U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application. J. Power Sources 188, 338–342 (2009)CrossRefGoogle Scholar
  84. 84.
    J.-W. Lang, L.-B. Kong, W.-J. Wu, M. Liu, Y.-C. Luo, L. Kang, A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J. Solid State Electrochem. 13, 333–340 (2009)CrossRefGoogle Scholar
  85. 85.
    H. Zhang, G. Cao, W. Wang, K. Yuan, B. Xu, W. Zhang, J. Cheng, Y. Yang, Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochim. Acta 54, 1153–1159 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Air Force Research Laboratory (AFRL)WPAFBFairbornUSA

Personalised recommendations