A Role of MicroRNAs in Cell Differentiation During Gonad Development

  • Hadas Grossman
  • Ruth ShalgiEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 58)


MicroRNAs (miRNAs) are a group of small noncoding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. Widely explored in the ovary, miRNAs were suggested to play a fundamental role in follicles’ assembly, growth, differentiation, and ovulation. In this chapter, we focus on data obtained from mice in which distinct proteins that participate in the biosynthesis of miRNAs were conditionally knocked out from germ cells (spermatogonial cells or oocytes) or gonadal somatic cells (Sertoli or granulosa cells). We detail recent advances in identification of particular miRNAs and their significance in the development and function of male and female gonads. miRNAs can serve as biomarkers and therapeutic agents of pathological conditions; thus, elucidating the branched and complex network of reproduction-related miRNAs will aid understanding of gonads’ physiology and managing reproduction disorders.


Ovary Testis miRNA Mouse Fertility 


Grant Support

This work was supported by a grant from the Israel Science Foundation (ISF 470/14 to R.S.).


  1. Abdelfattah AM, Choi MY (2015) Update on non-canonical microRNAs. Biomol Concepts 5:275–287Google Scholar
  2. Adham IM, Nayernia K, Burkhardt-Gottges E et al (2001) Teratozoospermia in mice lacking the transition protein 2 (Tnp2). Mol Hum Reprod 7:513–520PubMedCrossRefGoogle Scholar
  3. Åkerfelt M, Henriksson E, Laiho A et al (2008) Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proc Natl Acad Sci U S A 105:11224–11229PubMedPubMedCentralCrossRefGoogle Scholar
  4. Akiyama T, Kawasaki Y (2006) Wnt signalling and the actin cytoskeleton. Oncogene 25:7538–7544PubMedCrossRefGoogle Scholar
  5. Bao J, Li D, Wang L et al (2012) MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J Biol Chem 287:21686–21698PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barrionuevo F, Bagheri-Fam S, Klattig J et al (2006) Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74:195–201PubMedCrossRefGoogle Scholar
  7. Barrios F, Filipponi D, Pellegrini M et al (2010) Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci 123:871–880PubMedCrossRefGoogle Scholar
  8. Bellvé AR, Cavicchia JC, Millette CF et al (1977) Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol 74:68–85PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ben-Ami I, Armon L, Freimann S et al (2009) EGF-like growth factors as LH mediators in the human corpus luteum. Hum Reprod 24:176–184PubMedCrossRefGoogle Scholar
  10. Björk JK, Sandqvist A, Elsing AN et al (2010) miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development 137:3177–3184PubMedCrossRefGoogle Scholar
  11. Bock HH, Herz J (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 13:18–26PubMedCrossRefGoogle Scholar
  12. Bouniol-Baly C, Hamraoui L, Guibert J et al (1999) Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol Reprod 587:580–587CrossRefGoogle Scholar
  13. Boyer A, Goff AK, Boerboom D (2010) WNT signaling in ovarian follicle biology and tumorigenesis. Trends Endocrinol Metab 21:25–32PubMedCrossRefGoogle Scholar
  14. Bristol-Gould SK, Hutten CG, Sturgis C et al (2005) The development of a mouse model of ovarian endosalpingiosis. Endocrinology 146:5228–5236PubMedCrossRefGoogle Scholar
  15. Bristol-Gould SK, Kreeger PK, Selkirk CG et al (2006) Postnatal regulation of germ cells by activin: the establishment of the initial follicle pool. Dev Biol 298:132–148PubMedCrossRefGoogle Scholar
  16. Brunet S, Maro B (2005) Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction 130:801–811PubMedCrossRefGoogle Scholar
  17. Buchold GM, Coarfa C, Kim J et al (2010) Analysis of microRNA expression in the prepubertal testis. PLoS One 5:e15317PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carletti MZ, Fiedler SD, Christenson LK (2010) MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod 83:286–295PubMedPubMedCentralCrossRefGoogle Scholar
  19. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chang Y-F, Lee-Chang JS, Imam JS et al (2012) Interaction between microRNAs and actin-associated protein Arpc5 regulates translational suppression during male germ cell differentiation. Proc Natl Acad Sci U S A 109:5750–5755PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cheloufi S, Dos Santos CO, Chong MMW, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465:584–589PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen Y, Jefferson WN, Newbold RR et al (2007) Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology 148:3580–3590PubMedCrossRefGoogle Scholar
  23. Chen Y, Breen K, Pepling ME (2009) Estrogen can signal through multiple pathways to regulate oocyte cyst breakdown and primordial follicle assembly in the neonatal mouse ovary. J Endocrinol 202:407–417PubMedCrossRefGoogle Scholar
  24. Chong MMW, Zhang G, Cheloufi S et al (2010) Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev 24:1951–1960PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cifuentes D, Xue H, Taylor DW et al (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328:1694–1698PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cui XS, Sun SC, Kang YK, Kim NH (2013) Involvement of microRNA-335-5p in cytoskeleton dynamics in mouse oocytes. Reprod Fertil Dev 25:691–699PubMedCrossRefGoogle Scholar
  27. Dai L, Tsai-Morris C-H, Sato H et al (2011) Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem 286:44306–44318PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dai A, Sun H, Fang T et al (2013) MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 587:2474–2482PubMedCrossRefGoogle Scholar
  29. de Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21:776–798PubMedGoogle Scholar
  30. Drummond AE, Findlay JK (1999) The role of estrogen in folliculogenesis. Mol Cell Endocrinol 151:57–64PubMedCrossRefGoogle Scholar
  31. Du X-Y, Huang J, Xu L-Q et al (2012) The proto-oncogene c-src is involved in primordial follicle activation through the PI3K, PKC and MAPK signaling pathways. Reprod Biol Endocrinol 10:58PubMedPubMedCentralCrossRefGoogle Scholar
  32. El-Hefnawy T, Zeleznik AJ (2001) Synergism between FSH and activin in the regulation of proliferating cell nuclear antigen (PCNA) and cyclin D2 expression in rat granulosa cells. Endocrinology 142:4357–4362PubMedCrossRefGoogle Scholar
  33. Ender C, Krek A, Friedländer MR et al (2008) A Human snoRNA with MicroRNA-Like Functions. Mol Cell 32:519–528PubMedCrossRefGoogle Scholar
  34. Epifano O, Liang LF, Familari M et al (1995) Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development 121:1947–1956PubMedGoogle Scholar
  35. Ewen KA, Koopman P (2010) Mouse germ cell development: from specification to sex determination. Mol Cell Endocrinol 323:76–93PubMedCrossRefGoogle Scholar
  36. Feng R, Sang Q, Zhu Y et al (2015) MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep 5:8689PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fiedler SD, Carletti MZ, Hong X, Christenson LK (2008) Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod 79:1030–1037PubMedPubMedCentralCrossRefGoogle Scholar
  38. Flemr M, Ma J, Schultz RM, Svoboda P (2010) P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol Reprod 82:1008–1017PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fortune JE, Cushman RA, Wahl CM, Kito S (2000) The primordial to primary follicle transition. Mol Cell Endocrinol 163:53–60PubMedCrossRefGoogle Scholar
  40. Gallardo T, Shirley L, John GB, Castrillon DH (2007) Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 417:413–417CrossRefGoogle Scholar
  41. García-López J, Hourcade JDD, Del Mazo J (2013) Reprogramming of microRNAs by adenosine-to-inosine editing and the selective elimination of edited microRNA precursors in mouse oocytes and preimplantation embryos. Nucleic Acids Res 41:5483–5493PubMedPubMedCentralCrossRefGoogle Scholar
  42. Greenlee AR, Shiao M-S, Snyder E et al (2012) Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1. PLoS One 7:e46359PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640PubMedCrossRefGoogle Scholar
  44. Grossman H, Chuderland D, Ninio-Many L et al (2015) A novel regulatory pathway in granulosa cells, the LH/human chorionic gonadotropin-microRNA-125a-3p-Fyn pathway, is required for ovulation. FASEB J 29(8):3206–3216PubMedCrossRefGoogle Scholar
  45. Guzel Y, Nur Şahin G, Sekeroglu M, Deniz A (2014) Recombinant activin A enhances the growth and survival of isolated preantral follicles cultured three-dimensionally in extracellular basement matrix protein (matrigel) under serum-free conditions. Gynecol Endocrinol 30:388–391PubMedCrossRefGoogle Scholar
  46. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524PubMedCrossRefGoogle Scholar
  47. Hasuwa H, Ueda J, Ikawa M, Okabe M (2013) MiR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science 341:71–74PubMedCrossRefGoogle Scholar
  48. Havens MA, Reich AA, Duelli DM, Hastings ML (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 40:4626–4640PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hayashi K, Chuva de Sousa Lopes SM, Kaneda M et al (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3:e1738PubMedPubMedCentralCrossRefGoogle Scholar
  50. He Z, Jiang J, Kokkinaki M et al (2013) MiRNA-20 and MiRNA-106a Regulate Spermatogonial Stem Cell Renewal at the Post-transcriptional Level via Targeting STAT3 and Ccnd1. Stem Cells 31:1–22CrossRefGoogle Scholar
  51. Hillier SG (1994) Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod 9:188–191PubMedGoogle Scholar
  52. Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101PubMedCrossRefGoogle Scholar
  53. Hong X, Luense LJ, McGinnis LK et al (2008) Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 149:6207–6212PubMedPubMedCentralCrossRefGoogle Scholar
  54. Huszar JM, Payne CJ (2013) MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biol Reprod 88:15PubMedCrossRefGoogle Scholar
  55. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32PubMedCrossRefGoogle Scholar
  56. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263PubMedCrossRefGoogle Scholar
  57. Jamin SP, Arango NA, Mishina Y et al (2002) Requirement of Bmpr1a for Müllerian duct regression during male sexual development. Nat Genet 32:408–410PubMedCrossRefGoogle Scholar
  58. Jiang L, Chang J, Zhang Q et al (2013) MicroRNA hsa-miR-125a-3p activates p53 and induces apoptosis in lung cancer cells. Cancer Invest 31:538–544PubMedCrossRefGoogle Scholar
  59. Kaneda M, Tang F, O’Carroll D et al (2009) Essential role for Argonaute2 protein in mouse oogenesis. Epigenetics Chromatin 2:9PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kang MK, Han SJ (2011) Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep 44:147–157PubMedCrossRefGoogle Scholar
  61. Kezele P, Skinner MK (2003) Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology 144:3329–3337PubMedCrossRefGoogle Scholar
  62. Kim B-M, Choi MY (2012) Non-canonical microRNAs miR-320 and miR-702 promote proliferation in Dgcr8-deficient embryonic stem cells. Biochem Biophys Res Commun 462:183–189CrossRefGoogle Scholar
  63. Kim G, Georg INA, Scherthan H et al (2010a) Dicer is required for Sertoli cell function and survival. Int J Dev Biol 875:867–875CrossRefGoogle Scholar
  64. Kim Y-K, Heo I, Kim VN (2010b) Modifications of small RNAs and their associated proteins. Cell 143:703–709PubMedCrossRefGoogle Scholar
  65. Kim YJ, Ku S-Y, Kim YY et al (2013) MicroRNAs transfected into granulosa cells may regulate oocyte meiotic competence during in vitro maturation of mouse follicles. Hum Reprod 28(11):3050–3061PubMedCrossRefGoogle Scholar
  66. Kipp JL, Kilen SM, Bristol-Gould S et al (2007) Neonatal exposure to estrogens suppresses activin expression and signaling in the mouse ovary. Endocrinology 148:1968–1976PubMedCrossRefGoogle Scholar
  67. Kobayashi A, Chang H, Chaboissier M-C et al (2005) Sox9 in testis determination. Ann N Y Acad Sci 1061:9–17PubMedCrossRefGoogle Scholar
  68. Korhonen HM, Meikar O, Yadav RP et al (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS One 6:e24821PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kotaja N (2014) MicroRNAs and spermatogenesis. Fertil Steril 101:1552–1562PubMedCrossRefGoogle Scholar
  70. Kumar TR, Wang Y, Lu N, Matzuk MM (1997) Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 15:201–204PubMedCrossRefGoogle Scholar
  71. Lee M, Choi Y, Kim K et al (2014) Adenylation of maternally inherited microRNAs by Wispy. Mol Cell 56:696–707PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lei L, Jin S, Gonzalez G et al (2010) The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol 315:63–73PubMedCrossRefGoogle Scholar
  73. Lie BL, Leung E, Leung PC, Auersperg N (1996) Long-term growth and steroidogenic potential of human granulosa-lutein cells immortalized with SV40 large T antigen. Mol Cell Endocrinol 120:169–176PubMedCrossRefGoogle Scholar
  74. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723PubMedPubMedCentralCrossRefGoogle Scholar
  75. Liu W, Sato A, Khadka D et al (2008) Mechanism of activation of the Formin protein Daam1. Proc Natl Acad Sci U S A 105:210–215PubMedCrossRefGoogle Scholar
  76. Liu D, Li L, Fu H et al (2012) Biochemical and biophysical research communications inactivation of Dicer1 has a severe cumulative impact on the formation of mature germ cells in mouse testes. Biochem Biophys Res Commun 422:114–120PubMedCrossRefGoogle Scholar
  77. Lomelí H, Ramos-Mejia V, Nagy A (2000) Targeted insertion of Cre recombinase into the TNAP gene: excision in primordial germ cells. Genesis 26:8–10CrossRefGoogle Scholar
  78. Ma J, Flemr M, Stein P et al (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20:265–270PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ma H, Zhang J, Wu H (2014) Designing Ago2-specific siRNA/shRNA to avoid competition with endogenous miRNAs. Mol Ther Nucleic Acids 3:e176PubMedPubMedCentralCrossRefGoogle Scholar
  80. Maatouk DM, Loveland KL, McManus MT et al (2008) Dicer1 is required for differentiation of the mouse male germline. Biol Reprod 79:696–703PubMedCrossRefGoogle Scholar
  81. Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197PubMedCrossRefGoogle Scholar
  82. Meistrich ML, Mohapatra B, Shirley CR, Zhao M (2003) Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111:483–488PubMedCrossRefGoogle Scholar
  83. Miller D, Brinkworth M, Iles D (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139:287–301PubMedCrossRefGoogle Scholar
  84. Mishima T, Takizawa T, Luo SS et al (2008) MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction 136:811–822PubMedCrossRefGoogle Scholar
  85. Miyoshi K, Miyoshi T, Siomi H (2010) Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics 284:95–103PubMedCrossRefGoogle Scholar
  86. Modzelewski AJ, Holmes RJ, Hilz S et al (2012) AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germ line. Dev Cell 23:251–264PubMedPubMedCentralCrossRefGoogle Scholar
  87. Modzelewski AJ, Hilz S, Crate EA et al (2015) Dgcr8 and Dicer are essential for sex chromosome integrity during meiosis in males. J Cell Sci 128:2314–2327PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614PubMedPubMedCentralCrossRefGoogle Scholar
  89. Murchison EP, Stein P, Xuan Z et al (2007) Critical roles for Dicer in the female germline. Genes Dev 21:682–693PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nagaraja AK, Andreu-Vieyra C, Franco HL et al (2008) Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 22:2336–2352PubMedPubMedCentralCrossRefGoogle Scholar
  91. Nakamura M, Minegishi T, Hasegawa Y et al (1993) Effect of an activin A on follicle-stimulating hormone (FSH) receptor messenger ribonucleic acid levels and FSH receptor expressions in cultured rat granulosa cells. Endocrinology 133:538–544PubMedGoogle Scholar
  92. Nguyen TA, Jo MH, Choi Y-G et al (2015) Functional anatomy of the human microprocessor. Cell 161:1374–1387PubMedCrossRefGoogle Scholar
  93. Ninio-Many L, Grossman H, Levi M et al (2014) MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience 1:250–261PubMedPubMedCentralCrossRefGoogle Scholar
  94. Nishikura K (2006) Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol 7:919–931PubMedPubMedCentralCrossRefGoogle Scholar
  95. Niu Z, Goodyear SM, Rao S et al (2011) MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 108:12740–12745PubMedPubMedCentralCrossRefGoogle Scholar
  96. O’Gorman S, Dagenais NA, Qian M, Marchuk Y (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci U S A 94:14602–14607PubMedPubMedCentralCrossRefGoogle Scholar
  97. Oktem O, Urman B (2010) Understanding follicle growth in vivo. Hum Reprod 25:2944–2954PubMedCrossRefGoogle Scholar
  98. Otsuka M, Zheng M, Hayashi M et al (2008) Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 118:1944–1954PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pangas SA, Jorgez CJ, Tran M et al (2007) Intraovarian activins are required for female fertility. Mol Endocrinol 21:2458–2471PubMedCrossRefGoogle Scholar
  100. Panneerdoss S, Chang Y, Buddavarapu KC et al (2012) Androgen-responsive microRNAs in mouse Sertoli cells. PLoS One 7:e41146PubMedPubMedCentralCrossRefGoogle Scholar
  101. Papaioannou MD, Pitetti J, Ro S et al (2009) Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 326:250–259PubMedCrossRefGoogle Scholar
  102. Papaioannou MD, Lagarrigue M, Vejnar CE et al (2011) Loss of dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics 10:1–14CrossRefGoogle Scholar
  103. Pepling ME (2012) Follicular assembly: mechanisms of action. Reproduction 143:139–149PubMedCrossRefGoogle Scholar
  104. Pepling ME, Spradling AC (2001) Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 234:339–351PubMedCrossRefGoogle Scholar
  105. Quick-Cleveland J, Jacob JP, Weitz SH et al (2014) The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin. Cell Rep 7:1994–2005PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rakoczy J, Fernandez-Valverde SL, Glazov EA et al (2013) MicroRNAs-140-5p/140-3p modulate Leydig cell numbers in the developing mouse testis. Biol Reprod 88:143PubMedCrossRefGoogle Scholar
  107. Real FM, Sekido R, Lupiáñez DG et al (2013) A microRNA (mmu-miR-124) prevents Sox9 expression in developing mouse ovarian cells. Biol Reprod 89:78PubMedCrossRefGoogle Scholar
  108. Ro S, Park C, Sanders KM et al (2007) Cloning and expression profiling of testis-expressed microRNAs. Dev Biol 311:592–602PubMedPubMedCentralCrossRefGoogle Scholar
  109. Romero Y, Meikar O, Papaioannou MD et al (2011) Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 6:e25241PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86PubMedPubMedCentralCrossRefGoogle Scholar
  111. Salisbury J, Hutchison KW, Wigglesworth K et al (2009) Probe-level analysis of expression microarrays characterizes isoform-specific degradation during mouse oocyte maturation. PLoS One 4:1–11CrossRefGoogle Scholar
  112. Salustri A, Garlanda C, Hirsch E et al (2004) PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 131:1577–1586PubMedCrossRefGoogle Scholar
  113. Sánchez F, Adriaenssens T, Romero S, Smitz J (2010) Different follicle-stimulating hormone exposure regimens during antral follicle growth alter gene expression in the cumulus-oocyte complex in mice. Biol Reprod 83:514–524PubMedCrossRefGoogle Scholar
  114. Schmidt D, Ovitt CE, Anlag K et al (2004) The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131:933–942PubMedCrossRefGoogle Scholar
  115. Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of IoxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23:5080–5081PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sen A, Prizant H, Light A et al (2014) Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A 111:3008–3013PubMedPubMedCentralCrossRefGoogle Scholar
  117. Skinner MK (2005) Regulation of primordial follicle assembly and development. Hum Reprod Update 11:461–471PubMedCrossRefGoogle Scholar
  118. Smitz J, Cortvrindt R, Hu Y, Vanderstichele H (1998) Effects of recombinant activin A on in vitro culture of mouse preantral follicles. Mol Reprod Dev 50:294–304PubMedCrossRefGoogle Scholar
  119. Snyder EM, Small C, Griswold MD (2010) Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse. Biol Reprod 83:783–790PubMedPubMedCentralCrossRefGoogle Scholar
  120. Solc P, Schultz RM, Motlik J (2010) Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol Hum Reprod 16:654–664PubMedPubMedCentralCrossRefGoogle Scholar
  121. Song R, Ro S, Michaels JD et al (2009) Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 41:488–493PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sree S, Radhakrishnan K, Indu S, Kumar PG (2014) Dramatic changes in 67 miRNAs during initiation of first wave of spermatogenesis in Mus musculus testis: global regulatory insights generated by miRNA-mRNA network analysis. Biol Reprod 91:69PubMedCrossRefGoogle Scholar
  123. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230PubMedCrossRefGoogle Scholar
  124. Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28:117–149PubMedCrossRefGoogle Scholar
  125. Su YQ, Sugiura K, Woo Y et al (2007) Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol 302:104–117PubMedCrossRefGoogle Scholar
  126. Su H, Trombly MI, Chen J, Wang X (2009) Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 23:304–317PubMedPubMedCentralCrossRefGoogle Scholar
  127. Suh N, Baehner L, Moltzahn F et al (2010) MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20:271–277PubMedPubMedCentralCrossRefGoogle Scholar
  128. Swetloff A, Conne B, Huarte J et al (2009) Dcp1-bodies in mouse oocytes. Mol Biol Cell 20:4951–4961PubMedPubMedCentralCrossRefGoogle Scholar
  129. Tan T, Zhang Y, Ji W, Zheng P (2014) miRNA signature in mouse spermatogonial stem cells revealed by high-throughput sequencing. Biomed Res Int 2014:154251PubMedPubMedCentralGoogle Scholar
  130. Tang F, Kaneda M, O’Carroll D et al (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21:644–648PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tiwari M, Prasad S, Tripathi A et al (2015) Apoptosis in mammalian oocytes: a review. Apoptosis 20:1019–1025PubMedCrossRefGoogle Scholar
  132. Tong M-H, Mitchell D, Evanoff R, Griswold MD (2011) Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod 85:189–197PubMedPubMedCentralCrossRefGoogle Scholar
  133. Tong M-H, Mitchell DA, McGowan SD et al (2012) Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 86:72PubMedCrossRefGoogle Scholar
  134. Trombly DJ, Woodruff TK, Mayo KE (2009) Roles for transforming growth factor beta superfamily proteins in early folliculogenesis. Semin Reprod Med 27:14–23PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ungewitter EK, Yao HHC (2012) How to make a gonad: cellular mechanisms governing formation of the testes and ovaries. Sex Dev 7:7–20PubMedCrossRefGoogle Scholar
  136. Usongo M, Rizk A, Farookhi R (2012) β-Catenin/Tcf signaling in murine oocytes identifies nonovulatory follicles. Reproduction 144:669–676PubMedCrossRefGoogle Scholar
  137. Velthut-Meikas A, Simm J, Tuuri T et al (2013) Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes. Mol Endocrinol 27:1128–1141PubMedCrossRefGoogle Scholar
  138. Vidal VP, Chaboissier MC, de Rooij DG, Schedl A (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216–217PubMedCrossRefGoogle Scholar
  139. Wainwright EN, Jorgensen JS, Kim Y et al (2013) SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation. Biol Reprod 89:34PubMedCrossRefGoogle Scholar
  140. Wu L, Fan J, Belasco JG (2008) Importance of translation and nonnucleolytic ago proteins for on-target RNA interference. Curr Biol 18:1327–1332PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wu J, Bao J, Wang L et al (2011) MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Dev Biol 11:64PubMedPubMedCentralCrossRefGoogle Scholar
  142. Wu Q, Song R, Ortogero N et al (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287:25173–25190PubMedPubMedCentralCrossRefGoogle Scholar
  143. Xu B, Hua J, Zhang Y et al (2011) Proliferating cell nuclear antigen (PCNA) regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PLoS One 6:e16046PubMedPubMedCentralCrossRefGoogle Scholar
  144. Yan N, Lu Y, Sun H et al (2007) A microarray for microRNA profiling in mouse testis tissues. Reproduction 134:73–79PubMedCrossRefGoogle Scholar
  145. Yan G, Zhang L, Fang T et al (2012) MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett 586:3263–3270PubMedCrossRefGoogle Scholar
  146. Yang J-S, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903PubMedPubMedCentralCrossRefGoogle Scholar
  147. Yang Q-E, Racicot KE, Kaucher AV et al (2013a) MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development 140:280–290PubMedPubMedCentralCrossRefGoogle Scholar
  148. Yang S, Wang S, Luo A et al (2013b) Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod 89:126PubMedCrossRefGoogle Scholar
  149. Yao N, Lu C-L, Zhao J-J et al (2009) A network of miRNAs expressed in the ovary are regulated by FSH. Front Biosci 14:3239–3245CrossRefGoogle Scholar
  150. Yao G, Yin M, Lian J et al (2010a) MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 24:540–551PubMedCrossRefGoogle Scholar
  151. Yao N, Yang B-Q, Liu Y et al (2010b) Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine 38:158–166PubMedCrossRefGoogle Scholar
  152. Yao G, Liang M, Liang N et al (2014) MicroRNA-224 is involved in the regulation of mouse cumulus expansion by targeting Ptx3. Mol Cell Endocrinol 382:244–253PubMedCrossRefGoogle Scholar
  153. Yin M, Lü M, Yao G et al (2012) Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol 26:1129–1143PubMedCrossRefGoogle Scholar
  154. Yin M, Wang X, Yao G et al (2014) Transactivation of microRNA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem 289:18239–18257PubMedPubMedCentralCrossRefGoogle Scholar
  155. Yin F, Zhang JN, Wang SW et al (2015) MiR-125a-3p regulates glioma apoptosis and invasion by regulating Nrg1. PLoS One 10:e0116759PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yu Z, Raabe T, Hecht NB (2005) MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 73:427–433PubMedCrossRefGoogle Scholar
  157. Zeng F, Schultz RM (2005) RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev Biol 283:40–57PubMedCrossRefGoogle Scholar
  158. Zhang J, Ji X, Zhou D et al (2013a) miR-143 is critical for the formation of primordial follicles in mice. Front Biosci 1:588–597Google Scholar
  159. Zhang Q, Sun H, Jiang Y et al (2013b) MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS One 8:e59667PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zhang H, Jiang X, Zhang Y et al (2014a) MicroRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction 148:43–54PubMedCrossRefGoogle Scholar
  161. Zhang X, Simerly C, Hartnett C et al (2014b) Src-family tyrosine kinase activities are essential for differentiation of human embryonic stem cells. Stem Cell Res 13:379–389PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zimmermann C, Romero Y, Warnefors M et al (2014) Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility. PLoS One 9:e107023PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Cell Biology and DevelopmentTel Aviv UniversityRamat AvivIsrael

Personalised recommendations