Advertisement

Detecting Video Forgery by Estimating Extrinsic Camera Parameters

  • Xianglei Hu
  • Jiangqun Ni
  • Runbiao Pan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9569)

Abstract

Nowadays, people can easily combine several videos into a fake one by means of matte painting to create visually convincing video contents. This raises the need to verify whether a video content is original or not. In this paper we propose a geometric technique to detect this kind of tampering in video sequences. In this technique, the extrinsic camera parameters, which describe positions and orientations of camera, are estimated from different regions in video frames. A statistical distribution model is then developed to characterize these parameters in tampering-free video and provides evidences of video forgery finally. The efficacy of the proposed method has been demonstrated by experiments on both authentic and tampered videos from websites.

Keywords

Forgery detection Video forensics Extrinsic camera parameter 

Notes

Acknowledgment

The authors appreciate the supports received from National Natural Science Foundation of China (No. 61379156 and 60970145), the National Research Foundation for the Doctoral Program of Higher Education of China (No. 20120171110-037) and the Key Program of Natural Science Foundation of Guangdong (No. S2012020011114).

References

  1. 1.
    Milani, S., Fontani, M., Bestagini, P., Barni, M., Piva, A., Tagliasacchi, M., Tubaro, S.: An overview on video forensics. APSIPA Trans. Sig. Inf. Process. 1, e2 (2012). Cambridge Univ Press, CambridgeGoogle Scholar
  2. 2.
    Wang, W., Farid, H.: Exposing digital forgeries in interlaced and deinterlaced video. IEEE Trans. Inf. Forensics Secur. 2(3), 438–449 (2007). IEEE Press, New YorkCrossRefGoogle Scholar
  3. 3.
    Stamm, M.C., Lin, W.S., Liu, K.J.: Temporal forensics and anti-forensics for motion compensated video. IEEE Trans. Inf. Forensics Secur. 7(4), 1315–1329 (2012). IEEE Press, New YorkCrossRefGoogle Scholar
  4. 4.
    Hsu, C.C., Hung, T.Y., Lin, C.W., Hsu, C.T.: Video forgery detection using correlation of noise residue. In: 2008 IEEE 10th Workshop on In Multimedia Signal Processing, pp. 170–174. IEEE Press, New York(2008)Google Scholar
  5. 5.
    Chen, M., Fridrich, J., Goljan, M., Lukas, J.: Determining image origin and intergrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008). IEEE Press, New YorkCrossRefGoogle Scholar
  6. 6.
    Johnson, M.K., Farid, H.: Exposing digital forgeries by detecting inconsistencies in lighting. In: Proceedings of the 7th Workshop on Multimedia and Security, pp. 1–10. ACM (2005)Google Scholar
  7. 7.
    Kee, E., O’Brien, J.F., Farid, H.: Exposing photo manipulation with inconsistent shadows. ACM Trans. Graph. 32(4), 28 (2013). 1C-12. ACMGoogle Scholar
  8. 8.
    O’Brien, J.F., Farid, H.: Exposing photo manipulation with inconsistent reflections. ACM Trans. Graph. 31(1), 4 (2012). 1C-11. ACMGoogle Scholar
  9. 9.
    Wang, W., Farid, H.: Exposing digital forgeries in video by detecting duplication. In: Proceedings of the 9th Workshop on Multimedia and Security, pp. 35–42. ACM (2007)Google Scholar
  10. 10.
    Yao, H., Wang, S.: Detecting image forgery using perspective constraints. Signal Process. Lett. 19(3), 123–126 (2012). IEEE Press, New YorkCrossRefGoogle Scholar
  11. 11.
    Wang, W., Farid, H.: Detecting Re-projected Video. Proceedings of International Workshop on Information Hiding. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Conotter, V., Boato, G., Farid, H.: Detecting photo manipulation on signs and billboards. In: 2010 17th IEEE International Conference on Image Processing, pp. 1741–1744. IEEE Press, New York (2010)Google Scholar
  13. 13.
    Zhang, W., Cao, X., Qu, Y., Hou, Y., Zhao, H., Zhang, C.: Detecting and extracting the photo composites using planar homography and graph cut. IEEE Trans. Inf. Forensics Secur. 5(3), 544–555 (2010). IEEE Press, New YorkCrossRefGoogle Scholar
  14. 14.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 666–673 (2010)Google Scholar
  15. 15.
    Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004). IEEE Press, New YorkCrossRefGoogle Scholar
  16. 16.
    Hartley, R.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 580–C593 (1997). IEEE Press, New YorkCrossRefGoogle Scholar
  17. 17.
    Johnson, M.K., Farid, H.: Detecting photographic composites of people. In: Proceedings of International Workshop on Digital Watermarking, pp. 19–33. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2(66), 91–110 (2004). Springer, HeidelbergCrossRefGoogle Scholar
  19. 19.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysisand automated cartography. Commun. ACM 24(6), 381–395 (1981). ACMMathSciNetCrossRefGoogle Scholar
  20. 20.
    Wu, C.: Towards linear-time incremental structure from motion. In: 2013 International Conference on 3D Vision-3DV 2013, pp. 127–134 (2013)Google Scholar
  21. 21.
    Wu, C.: VisualSFM: A Visual Structure from Motion System. http://ccwu.me/vsfm/
  22. 22.
    Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp: 3057–3064. IEEE Press, New York (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Sun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Information SecurityInstitute of Information Engineering, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations