Image Noise and Digital Image Forensics

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9569)

Abstract

Noise is an intrinsic specificity of all forms of imaging, and can be found in various forms in all domains of digital imagery. This paper offers an overall review of digital image noise, from its causes and models to the degradations it suffers along the image acquisition pipeline. We show that by the end of the pipeline, the noise may have widely different characteristics compared to the raw image, and consider the consequences in forensic and counter-forensic imagery.

Keywords

Noise Digital forensics Camera pipeline 

References

  1. 1.
    LibRaw 0.17. Image decoder library (2015)Google Scholar
  2. 2.
    Buades, A., Coll, B., Morel, J.-M.: Non-local means denoising. Image Process. Line (2011)Google Scholar
  3. 3.
    Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)CrossRefGoogle Scholar
  4. 4.
    Colom, M., Buades, A.: Analysis and extension of the PCA method, estimating a noise curve from a single image. Image Process. Line (2014)Google Scholar
  5. 5.
    Costantini, R., Susstrunk, S.: Virtual sensor design. In: Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications V (2004)Google Scholar
  6. 6.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dehnie, S., Sencar, T., Memon, N.: Digital image forensics for identifying computer generated and digital camera images. In: 2006 IEEE International Conference on Image Processing, pp. 2313–2316. IEEE (2006)Google Scholar
  8. 8.
    Fan, W., Wang, K., Cayre, F., Xiong, Z.: A variational approach to JPEG anti-forensics. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3058–3062. IEEE (2013)Google Scholar
  9. 9.
    Faraji, H., MacLean, W.J.: CCD noise removal in digital images. IEEE Trans. Image Process. 15, 2676–2685 (2006)CrossRefGoogle Scholar
  10. 10.
    Farid, H.: Exposing digital forgeries from JPEG ghosts. IEEE Trans. Inf. Forensics Secur. 4(1), 154–160 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian noise modeling and fitting for single image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fridrich, J.: Digital image forensics using sensor noise. Signal Process. Mag. 26(2), 26–37 (2009)CrossRefGoogle Scholar
  13. 13.
    Hou, J.-U., Jang, H.-U., Lee, H.-K.: Hue modification estimation using sensor pattern noise. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 5287–5291. IEEE (2014)Google Scholar
  14. 14.
    Irie, K., McKinnon, A.E., Unsworth, K., Woodhead, I.M.: A model for measurement of noise in CCD digital-video cameras. Meas. Sci. Technol. 19, 045207 (2008)CrossRefGoogle Scholar
  15. 15.
    Jezierska, A., Chaux, C., Pesquet, J.-C., Talbot, H.: An EM approach for Poisson-Gaussian noise modeling. In: EUSIPCO, pp. 2244–2248, August 2011Google Scholar
  16. 16.
    Jezierska, A., Chouzenoux, E., Pesquet, J.-C., Talbot, H.: A primal-dual proximal splitting approach for restoring data corrupted with Poisson-Gaussian noise. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2012), March 2012Google Scholar
  17. 17.
    Lawgaly, A., Khelifi, F., Bouridane, A.: Weighted averaging-based sensor pattern noise estimation for source camera identification. In: IEEE International Conference on Image Processing (ICIP 2014), pp. 5357–5361, October 2014Google Scholar
  18. 18.
    Lukac, R.: Single-Sensor Imaging: Methods and Applications for Digital Cameras. CRC Press, Boca Raton (2008)CrossRefGoogle Scholar
  19. 19.
    Mahdian, B., Saic, S.: Using noise inconsistencies for blind image forensics. Image Vis. Comput. 27, 1497–1503 (2009)CrossRefGoogle Scholar
  20. 20.
    Medkeff, J.: Using image calibration to reduce digital noise in images (2004)Google Scholar
  21. 21.
    Nozick, V.: Camera array image rectification and calibration for stereoscopic and autostereoscopic displays. Ann. Telecommun. 68(11), 581–596 (2013)CrossRefGoogle Scholar
  22. 22.
    Paliy, D., Katkovnik, V., Bilcu, R., Alenius, S., Egiazarian, K.: Spatially adaptive color filter array interpolation for noiseless and noisy data. Int. J. Imaging Syst. Technol. 17, 105–122 (2007)CrossRefGoogle Scholar
  23. 23.
    Pan, X., Zhang, X., Lyu, S.: Exposing image splicing with inconsistent local noise variances. In: International Conference on Computation Photography (ICCP), pp. 1–10, April 2012Google Scholar
  24. 24.
    Popescu, A.C., Farid, H.: Statistical tools for digital forensics. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 128–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Rosenfeld, K., Sencar, H.T.: A study of the robustness of PRNU-based camera identification. In: IS&T/SPIE Electronic Imaging, p. 72540M. International Society for Optics and Photonics (2009)Google Scholar
  26. 26.
    Stamm, M., Liu, K.J.R.: Blind forensics of contrast enhancement in digital images. In: 2008 15th IEEE International Conference on Image Processing, ICIP 2008, pp. 3112–3115. IEEE (2008)Google Scholar
  27. 27.
    Stamm, M.C., Tjoa, S.K., Lin, W.S., Liu, K.J.R.: Anti-forensics of JPEG compression. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1694–1697. IEEE (2010)Google Scholar
  28. 28.
    Valenzise, G., Nobile, V., Tagliasacchi, M., Tubaro, S.: Countering JPEG anti-forensics. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 1949–1952. IEEE (2011)Google Scholar
  29. 29.
    Vaseghi, S.V.: Advanced Digital Signal Processing and Noise Reduction. Wiley, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thibaut Julliand
    • 1
  • Vincent Nozick
    • 2
  • Hugues Talbot
    • 1
  1. 1.Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, UMR 8049Université Paris-Est ESIEEParisFrance
  2. 2.Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, UMR 8049Université Paris-Est Marne-la-ValléeParisFrance

Personalised recommendations