Kinematics, Simulation, and Analysis of the Planar and Symmetric Postures of a Serial-Parallel Climbing Robot

  • Adrián Peidró
  • Arturo Gil
  • José María Marín
  • Yerai Berenguer
  • Óscar Reinoso
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 383)

Abstract

This chapter presents the kinematic analysis of a novel 10-degrees-of-freedom serial-parallel redundant robot. The robot is designed for climbing and exploring 3D truss structures to execute maintenance and inspection tasks. First, the forward kinematic problem of the robot is solved. Then, since the general inverse kinematic problem is complex due to the kinematic redundancy, a simplified problem which assumes planar and symmetric postures is solved. Using a developed simulator, it is shown that these planar and symmetric postures are sufficient to execute many typical movements necessary to explore 3D structures, such as transitions between different beams or between different faces of a beam. Finally, the workspace of the robot when it adopts the planar and symmetric postures is analyzed for different designs, demonstrating the flexibility of these postures.

Keywords

Biped robots Climbing robots Hybrid serial-parallel robots Kinematics Redundant robots Simulation Workspace 

References

  1. 1.
    Alciatore, D., Ng, C.: Determining manipulator workspace boundaries using the Monte Carlo method and least squares segmentation. ASME Robot. Kinemat. Dyn. Controls 72, 141–146 (1994)Google Scholar
  2. 2.
    Aracil, R., Saltaren, R.J., Reinoso, O.: A climbing parallel robot: a robot to climb along tubular and metallic structures. IEEE Robot. Autom. Mag. 13(1), 16–22 (2006)CrossRefGoogle Scholar
  3. 3.
    Baghani, A., Ahmadabadi, M.N., Harati, A.: Kinematics modeling of a wheel-based pole climbing robot (UT-PCR). In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2099–2104 (2005)Google Scholar
  4. 4.
    Bajd, T., Mihelj, M., Munih, M.: Introduction to Robotics. Springer, Netherlands (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Balaguer, C., Giménez, A., Pastor, J.M., Padrón, V.M., Abderrahim, M.: A climbing autonomous robot for inspection applications in 3D complex environments. Robotica 18(3), 287–297 (2000)CrossRefGoogle Scholar
  6. 6.
    Balaguer, C., Giménez, A., Jardon, A.: Climbing robots’ mobility for inspection and maintenance of 3D complex environments. Auton. Robots 18(2), 157–169 (2005)CrossRefGoogle Scholar
  7. 7.
    Figliolini, G., Rea, P., Conte, M.: Mechanical design of a novel biped climbing and walking robot. In: Parenti Castelli, V., Schiehlen, W. (ed.) ROMANSY 18 Robot Design, Dynamics and Control, CISM International Centre for Mechanical Sciences, vol. 524, pp. 199–206. Springer Vienna (2010)Google Scholar
  8. 8.
    Guan, Y., Jiang, L., Zhu, H., Zhou, X., Cai, C., Wu, W., Li, Z., Zhang, H., Zhang, X.: Climbot: a modular bio-inspired biped climbing robot. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1473–1478 (2011)Google Scholar
  9. 9.
    Kong, X., Gosselin, C.M.: Generation and forward displacement analysis of R\(\underline{{{\rm P}}}\)R-PR-R\(\underline{{{\rm P}}}\)R analytic planar parallel manipulators. ASME J. Mech. Design 124(2), 294–300 (2002)CrossRefGoogle Scholar
  10. 10.
    Mampel, J., Gerlach, K., Schilling, C., Witte, H.: A modular robot climbing on pipe-like structures. In: Proceedings of the 4th International Conference on Autonomous Robots and Agents, pp. 87–91 (2009)Google Scholar
  11. 11.
    Schmidt, D., Berns, K.: Climbing robots for maintenance and inspections of vertical structures—a survey of design aspects and technologies. Robot. Autom. Syst. 61(12), 1288–1305 (2013)CrossRefGoogle Scholar
  12. 12.
    Shvalb, N., Moshe, B.B., Medina, O.: A real-time motion planning algorithm for a hyper-redundant set of mechanisms. Robotica 31(8), 1327–1335 (2013)CrossRefGoogle Scholar
  13. 13.
    Tavakoli, M., Marques, L., De Almeida, A.T.: 3DCLIMBER: climbing and manipulation over 3D structures. Mechatronics 21(1), 48–62 (2011)CrossRefGoogle Scholar
  14. 14.
    Tavakoli, M., Viegas, C., Marques, L., Norberto Pires, J., De Almeida, A.T.: OmniClimber-II: an omnidirectional climbing robot with high maneuverability and flexibility to adapt to non-flat surfaces. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation, pp. 1349–1354 (2013)Google Scholar
  15. 15.
    Tavakoli, M., Zakerzadeh, M.R., Vossoughi, G.R., Bagheri, S.: A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications. Ind. Robot Inter. J. 32(2), 171–178 (2005)CrossRefGoogle Scholar
  16. 16.
    Yoon, Y., Rus, D.: Shady3D: a robot that climbs 3D trusses. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pp. 4071–4076 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adrián Peidró
    • 1
  • Arturo Gil
    • 1
  • José María Marín
    • 1
  • Yerai Berenguer
    • 1
  • Óscar Reinoso
    • 1
  1. 1.Systems Engineering and Automation DepartmentMiguel Hernández UniversityElche, AlicanteSpain

Personalised recommendations