Gravitational Search Algorithm-Based Evolving Fuzzy Models of a Nonlinear Process

  • Radu-Emil PrecupEmail author
  • Emil-Ioan Voisan
  • Emil M. Petriu
  • Mircea-Bogdan Radac
  • Lucian-Ovidiu Fedorovici
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 383)


Implementation issues related to evolving Takagi-Sugeno -Kang (TSK) fuzzy models of a nonlinear process are offered. The nonlinear process is the pendulum dynamics in the framework of the representative pendulum-crane systems, where the pendulum angle is the output variable of the TSK fuzzy models. An online identification algorithm (OIA) is given, which continuously evolves the rule bases and the parameters of the TSK fuzzy models, adds new rules with more summarization power and modifies the existing rules and parameters. The OIA includes an input selection algorithm and a Gravitational Search Algorithm that updates the parameters in the rule consequents. The evolving TSK fuzzy models are validated by experiments conducted on pendulum-crane laboratory equipment.


Evolving Takagi-Sugeno-Kang fuzzy models Gravitational search algorithm Implementation issues Pendulum Dynamics 



This work was supported by a grant from the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0109, by a grant from the Partnerships in priority areas – PN II program of the Romanian National Authority for Scientific Research ANCS, CNDI – UEFISCDI, project number PN-II-PT-PCCA-2011-3.2-0732, by grants from the Partnerships in priority areas – PN II program of the Romanian Ministry of Education and Research (MEdC) – the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI), project numbers PN-II-PT-PCCA-2013-4-0544 and PN-II-PT-PCCA-2013-4-0070, and by a grant from the NSERC of Canada.


  1. 1.
    Angelov, P.: Evolving Rule based Models: A Tool for Design of Flexible Adaptive Systems. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Mouchaweh, M.S., Devillez, A., Lecolier, G.V., Billaudel, P.: Incremental learning in fuzzy pattern matching. Fuzzy Sets Syst. 132, 49–62 (2002)Google Scholar
  3. 3.
    Lughofer, E.: Evolving Fuzzy Systems—Methodologies. Advanced Concepts and Applications. Springer, Berlin (2011)zbMATHGoogle Scholar
  4. 4.
    Precup, R.-E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M.: An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput. Ind. (2015). doi: 10.1016/j.compind.2015.03.001
  5. 5.
    Dovžan, D., Logar, V., Škrjanc, I.: Implementation of an Evolving fuzzy model (eFuMo) in a monitoring system for a waste-water treatment process. IEEE Trans. Fuzzy Syst. (2014). doi: 10.1109/TFUZZ.2014.2379252
  6. 6.
    Precup, R.-E., Filip, H.-I., Radac, M.-B., Pozna, C., Dragos, C.-A., Preitl, S.: Experimental results of evolving Takagi-Sugeno fuzzy models for a nonlinear benchmark. In: 2012 IEEE 3\(^{rd}\) International Conference on Cognitive Infocommunications, pp. 567–572. Kosice, Slovakia (2012)Google Scholar
  7. 7.
    Precup, R.-E., Filip, H.-I., Radac, M.-B., Petriu, E.M., Preitl, S., Dragos, C.-A.: Online identification of evolving Takagi-Sugeno-Kang fuzzy models for crane systems. Appl. Soft Comput. 24, 1155–1163 (2014)CrossRefGoogle Scholar
  8. 8.
    Angelov, P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. B Cybern. 34, 484–498 (2004)CrossRefGoogle Scholar
  9. 9.
    Precup, R.-E., Voisan, E.-I., Petriu, E.M., Radac, M.-B., Fedorovici, L.-O.: Implementation of evolving fuzzy models of a nonlinear process. In: 12\(^{th}\) International Conference on Informatics in Control, Automation and Robotics, vol.1, pp. 5–14. Colmar, Alsace, France (2015)Google Scholar
  10. 10.
    Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Radac, M.-B.: Gravitational search algorithms in fuzzy control systems tuning. In: 18\(^{th}\) IFAC World Congress, pp. 13624–13629. Milano, Italy (2011)Google Scholar
  11. 11.
    David, R.-C., Precup, R.-E., Petriu, E.M., Radac, M.-B., Preitl, S.: Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity. Inf. Sci. 247, 154–173 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chang, W.-J., Huang, B.-J.: Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises. ISA Trans. 53, 1787–1795 (2014)CrossRefGoogle Scholar
  13. 13.
    Allouche, B., Vermeiren, L., Dequidt, A., Dambrine, M.: Step-crossing feasibility of two-wheeled transporter: analysis based on Takagi-Sugeno descriptor approach. In: IEEE 17\(^{th}\) International Conference on Intelligent Transportation Systems, pp. 2675–2680. Qingdao, China (2014)Google Scholar
  14. 14.
    Chiu, C.-S.: A dynamic decoupling approach to robust T-S fuzzy model-based control. IEEE Trans. Fuzzy Syst. 22, 1088–1100 (2014)CrossRefGoogle Scholar
  15. 15.
    Tsai, P.-W., Chen, C.-W.: Novel criterion for nonlinear time-delay systems using LMI fuzzy Lyapunov method. Appl. Soft Comput. 25, 461–472 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gao, Q., Feng, G., Dong, D., Liu, L.: Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems. IEEE Trans. Cybern. 54, 880–887 (2015)Google Scholar
  17. 17.
    Li, H., Sun, X., Shi, P., Lam, H.-K.: Control design of interval type-2 fuzzy systems with actuator fault: sampled-data control approach. Inf. Sci. 302, 1–13 (2015)CrossRefGoogle Scholar
  18. 18.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)CrossRefzbMATHGoogle Scholar
  19. 19.
    Turnau, A., Pilat, A., Hajduk, K., Korytowski, A., Grega, W., Gorczyca, P., Kolek, K., Rosól, M.: Pendulum-Cart System User’s Manual. INTECO Ltd., Krakow (2008)Google Scholar
  20. 20.
    Ramos, J.V., Dourado, A.: On-line interpretability by rule base simplification and reduction. In: European Symposium on Intelligent Technologies, Hybrid Systems and Their Implementation on Smart Adaptive Systems, pp. 1–6. Aachen, Germany (2004)Google Scholar
  21. 21.
    Aires, L., Araújo, J., Dourado, A.: Industrial monitoring by evolving fuzzy systems. In: Joint 2009 IFSA World Congress and 2009 EUSFLAT Conference, pp. 1358–1363. Lisbon, Portugal (2009)Google Scholar
  22. 22.
    Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)CrossRefGoogle Scholar
  23. 23.
    Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10, 144–154 (2002)CrossRefGoogle Scholar
  24. 24.
    Lughofer, E., Klement, E. P.: FLEXFIS: a variant for incremental learning of Takagi-Sugeno fuzzy systems. In: 14\(^{\rm th}\) IEEE International Conference on Fuzzy Systems, pp. 915–920. Reno, NV, USA (2005)Google Scholar
  25. 25.
    Danković, B., Nikolić, S., Milojković, M., Jovanović, Z.: A class of almost orthogonal filters. J. Circuits Syst. Comput. 18, 923–931 (2009)CrossRefGoogle Scholar
  26. 26.
    Filip, F.-G., Leiviskä, K.: Large-scale complex systems. In: Nof, S.Y. (ed.) Springer Handbook of Automation, pp. 619–638. Springer, Heidelberg (2009)Google Scholar
  27. 27.
    Blažič, S., Matko, D., Škrjanc, I.: Adaptive law with a new leakage term. IET Control Theory Appl. 4, 1533–1542 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Precup, R.-R., David, R.-C., Petriu, E.M., Preitl, S., Paul, A.S.: Gravitational search algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing, vol. 96, pp. 141–150. Springer, Heidelberg (2011)Google Scholar
  29. 29.
    Horváth, L., Rudas, I.J.: Active knowledge for the situation-driven control of product definition. Acta Polytech. Hung. 10(2), 217–234 (2013)Google Scholar
  30. 30.
    Osaba, E., Diaz, F., Onieva, E., Carballedo, R., Perallos, A.: AMCPA: a population metaheuristic with adaptive crossover probability and multi-crossover mechanism for solving combinatorial optimization problems. Int. J. Artif. Intell. 12(2), 1–23 (2014)Google Scholar
  31. 31.
    Tang, L., Zhao, Y., Liu, J.: An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Trans. Evol. Comput. 18, 209–225 (2014)CrossRefGoogle Scholar
  32. 32.
    Savio, M.R.D., Sankar, A., Vijayarajan, N.R.: A novel enumeration strategy of maximal bicliques from 3-dimensional symmetric adjacency matrix. Int. J. Artif. Intell. 12(2), 42–56 (2014)Google Scholar
  33. 33.
    Zhao, X., Yin, S., Li, H., Niu, B.: Switching stabilization for a class of slowly switched systems. IEEE Trans. Autom. Control 60, 221–226 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Preitl, S., Precup, R.-E.: Introducere in Conducerea Fuzzy a Proceselor. Editura Tehnica, Bucharest (1997)Google Scholar
  35. 35.
    Baranyi, P., Tikk, D., Yam, Y., Patton, R.J.: From differential equations to PDC controller design via numerical transformation. Comput. Ind. 51, 281–297 (2003)CrossRefzbMATHGoogle Scholar
  36. 36.
    Precup, R.-E., Tomescu, M.L., Preitl, S.: Fuzzy logic control system stability analysis based on Lyapunov’s direct method. Int. J. Comput. Commun. Control 4, 415–426 (2009)CrossRefGoogle Scholar
  37. 37.
    Boza, Sánchez, A.S., Haber-Guerra, R., Gajate, A.: Artificial cognitive control system based on the shared circuits model of sociocognitive capacities. A first approach. Eng. Appl. Artif. Intell. 24, 209–219 (2011)Google Scholar
  38. 38.
    Precup, R.-E., Dragos, C.-A., Preitl, S., Radac, M.-B., Petriu, E.M.: Novel tensor product models for automatic transmission system control. IEEE Syst. J. 6, 488–498 (2012)CrossRefGoogle Scholar
  39. 39.
    Vaščák, J.: Adaptation of fuzzy cognitive maps by migration algorithms. Kybernetes 41, 429–443 (2012)CrossRefGoogle Scholar
  40. 40.
    Johanyák, Z.C.: Fuzzy modeling of thermoplastic composites’ melt volume rate. Comput. Inf. 32, 845–857 (2013)Google Scholar
  41. 41.
    Husek, P.: Robust PI controller design with respect to fuzzy sensitivity margins. Appl. Soft Comput. 13, 2037–2044 (2013)CrossRefGoogle Scholar
  42. 42.
    Mishra, J., Gho, S.: Uncertain query processing using vague set or fuzzy set: which one is better? Int. J. Comput. Commun. Control 9, 730–740 (2014)CrossRefGoogle Scholar
  43. 43.
    Kaur, G., Dhar, J., Guha, R.K.: Stock market forecasting using ANFIS with OWA operator. Int. J. Artif. Intell. 12(2), 102–114 (2014)Google Scholar
  44. 44.
    Liu, Z., Chen, C., Zhang, Y.: Decentralized robust fuzzy adaptive control of humanoid robot manipulation with unknown actuator backlash. IEEE Trans. Fuzzy Syst. 23, 605–616 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Radu-Emil Precup
    • 1
    Email author
  • Emil-Ioan Voisan
    • 1
  • Emil M. Petriu
    • 2
  • Mircea-Bogdan Radac
    • 1
  • Lucian-Ovidiu Fedorovici
    • 1
  1. 1.Politehnica University of TimisoaraTimisoaraRomania
  2. 2.University of OttawaOttawaCanada

Personalised recommendations