Scanning Techniques with Low Bandwidth Radar for Robotic Mapping and Localization

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 383)

Abstract

This article presents two methods for setting up a scanning unit with low bandwidth radar sensors with a wide opening angle of the main beam and evaluates their suitability for robotic mapping. Both approaches, namely the lateration and the ASR technique, base upon a rotary joint and provide a two-dimensional scan. The relevant theory behind both methods and considerations on erroneous influences is described in the first part of this paper. The focus of the second part is laying on application in occupancy grid and feature mapping, which will be presented through experiments.

Keywords

FMCW radar Lateration ASR Robotic mapping SLAM 

References

  1. 1.
    Adams, M., Mullane, J., Jose, E.: Robotic Navigation and Mapping with Radar. Artech House (2012)Google Scholar
  2. 2.
    Agilent. Techniques for Precision Validation of Radar System Performance in the Field. Agilent Technologies (2014)Google Scholar
  3. 3.
    Bühren, M.: Simulation und Verarbeitung von Radarziellisten im Automobil. PhD thesis, Universität Stuttgart (2008)Google Scholar
  4. 4.
    Clark, S., Dissanayake, G.: Simultaneous localisation and map building using milimetre wave radar to extract natural features. In: International Conference on Robotics and Automation (1999)Google Scholar
  5. 5.
    Curry, G.R.: Radar System Performance Modeling. Artech House (2005)Google Scholar
  6. 6.
    Detlefsen, J., Rozmann, M., Lange, M.: 94 HGZ 3-D imaging radar sensor for industrial environments. EARSeL Adv. Remote Sens. (1993)Google Scholar
  7. 7.
    Elfes, A.: Using occupancy grid mapping for mobile robot perception and navigation. IEEE Comput. (1989)Google Scholar
  8. 8.
    Fölster, F.: Erfassung ausgedehnter Objekte durch ein Automobil-Radar. PhD thesis, Technische Universität Hamburg-Harburg (2006)Google Scholar
  9. 9.
    Fölster, F., Rohling, H.: Data association and tracking for automotive radar networks. IEEE Trans. Intell. Transp. Syst. (2005)Google Scholar
  10. 10.
    Kidera, S., Sakamoto, T., Toru, S.: High-resolution and real-time three-dimensional imaging algorithm with envelopes of spheres for uwb radars. IEEE Trans. Geosci. Remote Sens. (2008)Google Scholar
  11. 11.
    Ludloff, A.: Praxiswissen Radar und Radarsignalverarbeitung. vieweg (1998)Google Scholar
  12. 12.
    Marck, J.W., Mohamoud, A., Houwen, R.V., Hejster, Eric vd qnd.: Indoor radar SLAM. A radar application for vision and gps denied environments. In: 10th European Radar Conference (2013)Google Scholar
  13. 13.
    Mirbach, M., Menzel, W.: A simple surface estimation algorithm for uwb pulse radas based on trilateration. IEEE International Conference on Ultra-Wideband (2011)Google Scholar
  14. 14.
    Rabe, H., Denicke, E., Armbrecht, G., Musch, T., Rolfes, I.: Considerations on radar localization in multi-target environments. Adv. Radio Sci. (2009)Google Scholar
  15. 15.
    Sakamoto, T.: A fast algorithm for 3-dimensional imaging with uwb pulse radar systems. IEICE Trans. Commun. (2007)Google Scholar
  16. 16.
    Schmid, G., Neubauer, G.: Bestimmung der exposition durch ultra-wideband technologien. Technical report, Bundesamt für Strahlenschutz (2007)Google Scholar
  17. 17.
    Schneider, M.: LSB-Methode Bestimmung von Distanzunterschieden mittels parametrierter Schwebungen. PhD thesis, Universität Rostock (2013)Google Scholar
  18. 18.
    Tadokoro, S.: Rescue Robotics—DDT Project on Robots and Systems for Uraban Search and Rescue. Springer (2009)Google Scholar
  19. 19.
    Thrun, S.: Robotic Mapping: A Survey. School of Comuputer Science (2002)Google Scholar
  20. 20.
    Thrun, S., Burgard, W., Fox, D.: Probalistic Robotics. The MIT Press (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.RTS, Leibniz Universität HannoverHannoverGermany

Personalised recommendations