Systems Engineering and Architecting for Intelligent Autonomous Systems

  • Sagar BehereEmail author
  • Martin Törngren


This chapter provides practical insights into specific systems engineering and architecture considerations for building autonomous driving systems. It is aimed at the ambitious practitioner with a solid engineering background. We envision such a practitioner to be interested not just in concrete system implementations, but also in borrowing ideas from the general theory of intelligent systems to advance the state of autonomous driving.


  1. 1.
    Methodology Guidelines When Using EAST-ADL2. Public deliverable 5.1.1 of the ATESST2 project (2010),
  2. 2.
    Automotive Grade Linux (2015),
  3. 3.
    Biologically Inspired Cognitive Architectures (BICA) Society. The MAPPED Repository (2015),
  4. 4.
    Distributed Messaging with Zero MQ (2015),
  5. 5.
    FMI: Functional Mock-up Interface (2015),
  6. 6.
    IEEE Spectrum. How Google’s Autonomous Car Passed the First U.S. State Self-Driving Test (2015), Google Scholar
  7. 7.
    OSLC: Open Services for Lifecycle Collaboration (2015), Google Scholar
  8. 8.
  9. 9.
    The ARCADIA MBSE method for systems, hardware and software architectural design (2015),
  10. 10.
    The AUTOSAR Platform (2015),
  11. 11.
    The Capella Graphical Modeling Workbench (2015),
  12. 12.
    The HAVE-it EU project. Deliverable D12.1 Architecture document (2015),
  13. 13.
    The OMG MBSE Wiki page on Methodology and Metrics (2015), Google Scholar
  14. 14.
    The OSEK-VDX portal (2015),
  15. 15.
    The PREEMPT_RT patch for the Linux kernel. Real-Time Linux Wiki (2015),
  16. 16.
    The Unreal gaming engine (2015),
  17. 17.
    The Xenomai solution for real-time Linux (2015),
  18. 18.
    A. Albinet, J.L. Boulanger, H. Dubois, M.A. Peraldi-Frati, Y. Sorel, Q.D. Van, Model-based methodology for requirements traceability in embedded systems, in Proceedings of 3rd European Conference on Model Driven Architecture Foundations and Applications, ECMDA’07, Haifa (2007), Google Scholar
  19. 19.
    S. Behere, M. Törngren, Architecture challenges for intelligent autonomous machines: an industrial perspective, in Proceedings of the 13th International Conference on Intelligent Autonomous Machines, IAS-13 (Springer International Publishing, Berlin, 2014). Google Scholar
  20. 20.
    S. Behere, M. Törngren, A functional architecture for autonomous driving, in Proceedings of the First International Workshop on Automotive Software Architecture, WASA ’15 (ACM, New York, NY, 2015), pp. 3–10. doi:10.1145/2752489.2752491.
  21. 21.
    S. Behere, M. Törngren, D. Chen, A reference architecture for cooperative driving. J. Syst. Archit. 59 (10, Part C), 1095–1112 (2013). doi: Embedded Systems Software ArchitectureCrossRefGoogle Scholar
  22. 22.
    P. Bieber, F. Boniol, M. Boyer, E. Noulard, C. Pagetti, New challenges for future avionic architectures. Aerosp. Lab (4), 1–10 (2012)Google Scholar
  23. 23.
    B.W. Boehm, A spiral model of software development and enhancement. Computer 21 (5), 61–72 (1988)CrossRefGoogle Scholar
  24. 24.
    J. Bongard, H. Lipson, Automatic synthesis of multiple internal models through active exploration, in AAAI Fall Symposium: From Reactive to Anticipatory Cognitive Embodied Systems (2005)Google Scholar
  25. 25.
    J. Bongard, V. Zykov, H. Lipson, Resilient machines through continuous self-modeling. Science 314 (5802), 1118–1121 (2006)CrossRefGoogle Scholar
  26. 26.
    G. Bradski, The OpenCV library. Dr Dobb’s J. Softw. Tools (2000). Google Scholar
  27. 27.
    P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Müller, B. Penzenstadler, K. Pohl, T. Weyer, Guiding requirements engineering for software-intensive embedded systems in the automotive industry. Comput. Sci. Res. Dev. 29 (1), 21–43 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Broy, Model-driven architecture-centric engineering of (embedded) software intensive systems: modeling theories and architectural milestones. Innov. Syst. Softw. Eng. 3 (1), 75–102 (2006). doi:10.1007/s11334-006-0011-y. CrossRefGoogle Scholar
  29. 29.
    M. Broy, Two sides of structuring multi-functional software systems: function hierarchy and component architecture, in 5th ACIS International Conference on Software Engineering Research, Management & Applications (SERA 2007) (2007), pp. 3–12. doi:10.1109/SERA.2007.129.
  30. 30.
    M. Broy, Software and system modeling: structured multi-view modeling, specification, design and implementation, in Conquering Complexity, ed. by M. Hinchey, L. Coyle (Springer, London, 2012), pp. 309–372CrossRefGoogle Scholar
  31. 31.
    M. Broy, F. Huber, B. Paech, B. Rumpe, K. Spies, Software and system modeling based on a unified formal semantics, in Requirements Targeting Software and Systems Engineering, ed. by M. Broy, B. Rumpe. Lecture Notes in Computer Science, vol. 1526 (Springer, Berlin, Heidelberg, 1998), pp. 43–68CrossRefGoogle Scholar
  32. 32.
    H. Bruyninckx, Open robot control software: the OROCOS project, in Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation (Cat No01CH37164), vol. 3 (2001), pp. 2523–2528. doi:10.1109/ROBOT.2001.933002.
  33. 33.
    A. Burns, The Ravenscar profile. Ada Lett. XIX (4), 49–52 (1999). doi:10.1145/340396.340450. CrossRefGoogle Scholar
  34. 34.
    D. Chalmers, The Conscious Mind: In Search of a Fundamental Theory. Oxford paperbacks (OUP, New York, 1996)Google Scholar
  35. 35.
    A. Chella, M. Cossentino, V. Seidita, C. Tona, An approach for the design of self-conscious agent for robotics, in Active Media Technology, ed. by A. An, P. Lingras, S. Petty, R. Huang. Lecture Notes in Computer Science, vol. 6335 (Springer, Berlin, Heidelberg, 2010), pp. 306–317CrossRefGoogle Scholar
  36. 36.
    P. Cuenot, P. Frey, R. Johansson, The EAST-ADL architecture description language for automotive embedded software, in Model-Based Engineering of Embedded Real-Time Systems (springer, Berlin, Heidelberg, 2010), pp. 297–307. CrossRefGoogle Scholar
  37. 37.
    D. Davidson, Turing’s test, in Modelling the Mind, ed. by K. Said (Oxford University Press, Oxford, 1990)Google Scholar
  38. 38.
    J.A. Estefan et al., Survey of model-based systems engineering (MBSE) methodologies. INCOSE MBSE Focus Group 25:8 (2007)Google Scholar
  39. 39.
    P.H. Feiler, B.A. Lewis, S. Vestal, The SAE Architecture Analysis and Design Language (AADL) a standard for engineering performance critical systems, in 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control (2006). doi:10.1109/CACSD-CCA-ISIC.2006.4776814
  40. 40.
    T. Ferris, On the methods of research for systems engineering, in Annual Conference on Systems Engineering Research (April 2009). Google Scholar
  41. 41.
    T. Ferris, Engineering design as research, in Research Methodologies, Innovations and Philosophies in Software Systems Engineering and Information Systems, IGI Global, ed. by M. Mora, O. Gelman, A.L. Steenkamp, M. Raisinghani (2012). doi:10.4018/978-1-4666-0179-6.
  42. 42.
    T. Fong, C. Thorpe, Vehicle teleoperation interfaces. Auton. Robots 11 (1), 9–18 (2001)CrossRefGoogle Scholar
  43. 43.
    K. Forsberg, H. Mooz, The relationship of systems engineering to the project cycle. Eng. Manag. J. 4 (3), 36–43 (1992)CrossRefGoogle Scholar
  44. 44.
    K. Forsberg, H. Mooz, Application of the “vee” to incremental and evolutionary development, in Systems Engineering in the Global Market Place (1995), pp. 801–808Google Scholar
  45. 45.
    D. Gamez, Progress in machine consciousness. Conscious. Cogn. 17 (3), 887–910 (2008)CrossRefGoogle Scholar
  46. 46.
    T. Henzinger, J. Sifakis, The embedded systems design challenge, in FM 2006: Formal Methods, ed. by J. Misra, T. Nipkow, E. Sekerinski. Lecture Notes in Computer Science, vol. 4085 (Springer, Berlin, Heidelberg, 2006), pp. 1–15Google Scholar
  47. 47.
    S. Hussain, Investigating architecture description languages (ADLs) a systematic literature review. Master’s thesis, Linköpings universitet, Linköping, 2013Google Scholar
  48. 48.
    A.L. Juarez Dominguez, Feature interaction detection in the automotive domain, in 2008 23rd IEEE/ACM International Conference on Automated Software Engineering (IEEE, 2008), pp. 521–524. doi:10.1109/ASE.2008.97.
  49. 49.
    E.Y. Kang, E.P. Enoiu, R. Marinescu, C. Seceleanu, P.Y. Schobbens, P. Pettersson, A methodology for formal analysis and verification of east-ADL models. Reliab. Eng. Syst. Saf. 120, 127–138 (2013). doi: CrossRefGoogle Scholar
  50. 50.
    H. Kopetz, The complexity challenge in embedded system design, in 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC) (IEEE, 2008), pp. 3–12. doi:10.1109/ISORC.2008.14.
  51. 51.
    E.A. Lee, Computing needs time. Commun. ACM 52 (5), 70–79 (2009). doi:10.1145/1506409.1506426. CrossRefGoogle Scholar
  52. 52.
    P. Maes, Concepts and experiments in computational reflection, in Conference Proceedings on Object-Oriented Programming Systems, Languages and Applications, OOPSLA ’87 (ACM, New York, NY, 1987), pp. 147–155. doi:10.1145/38765.38821.
  53. 53.
    I. Malavolta, H. Muccini, P. Pelliccione, D. Tamburri, Providing architectural languages and tools interoperability through model transformation technologies. IEEE Trans. Softw. Eng. 36 (1), 119–140 (2010). doi:10.1109/TSE.2009.51 CrossRefGoogle Scholar
  54. 54.
    J. Mårtensson, A. Alam, S. Behere, The development of a cooperative heavy-duty vehicle for the GCDC 2011: team scoop. IEEE Trans. Intell. Transp. Syst. 13 (3), 1033–1049 (2012). doi:10.1109/TITS.2012.2204876. CrossRefGoogle Scholar
  55. 55.
    J. McCarthy, Making robots conscious of their mental states, in Working Notes of the AAAI Spring Symposium on Representing Mental States and Mechanisms, Menlo Park, CA, 1995Google Scholar
  56. 56.
    D. McDermott, Artificial intelligence and consciousness, in The Cambridge Handbook of Consciousness, ed. by P.D. Zelazo, M. Moscovitch, E. Thompson (Cambridge University Press, Cambridge, 2007), pp. 117–150. Books Online
  57. 57.
    A. Metzger, Feature interactions in embedded control systems. Comput. Netw. 45 (5), 625–644 (2004). doi:10.1016/j.comnet.2004.03.002. CrossRefGoogle Scholar
  58. 58.
    M. Minsky, Matter, mind, and models, in Semantic Information Processing, ed. by M.L. Minsky (1968)Google Scholar
  59. 59.
    M. Montemerlo et al., Junior: the Stanford entry in the urban challenge. J. Field Rob. 25 (9), 569–597 (2008). CrossRefGoogle Scholar
  60. 60.
    E. Nivel, K. Thórisson, Towards a programming paradigm for control systems with high levels of existential autonomy, in Artificial General Intelligence, ed. by K.U. Kühnberger, S. Rudolph, P. Wang. Lecture Notes in Computer Science, vol. 7999 (Springer, Berlin, Heidelberg, 2013), pp. 78–87CrossRefGoogle Scholar
  61. 61.
    M. Odersky, L. Spoon, B. Venners, Programming in Scala: A Comprehensive Step-by-Step Guide, 2nd edn. (Artima Incorporation, Walnut Creek, 2011)Google Scholar
  62. 62.
    G. Pardo-Castellote, OMG data-distribution service: architectural overview, in Proceedings of the 2003 IEEE Conference on Military Communications - Volume I, MILCOM’03 (IEEE Computer Society, Washington, DC, 2003), pp. 242–247Google Scholar
  63. 63.
    F. Perotto, R. Vicari, L. Alvares, An autonomous intelligent agent architecture based on constructivist ai, in Artificial Intelligence Applications and Innovations, IFIP International Federation for Information Processing, vol. 154, ed. by M. Bramer, V. Devedzic (Springer US, 2004), pp. 103–115.
  64. 64.
    M. Quigley, K. Conley, B. Gerkey, J. Faust, T.B. Foote, J. Leibs, R. Wheeler, A.Y. Ng, ROS: an open-source robot operating system, in ICRA Workshop on Open Source Software (2009)Google Scholar
  65. 65.
    W.W. Royce, Managing the development of large software systems: concepts and techniques, in Proceedings of the 9th International Conference on Software Engineering, ICSE ’87 (IEEE Computer Society Press, Los Alamitos, CA, 1987), pp. 328–338Google Scholar
  66. 66.
    R.B. Rusu, S. Cousins, 3D is here: Point Cloud Library (PCL), in 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 1–4. doi:10.1109/icra.2011.5980567
  67. 67.
    A.V. Samsonovich, Toward a unified catalog of implemented cognitive architectures, in Proceedings of the 2010 Conference on Biologically Inspired Cognitive Architectures 2010: Proceedings of the First Annual Meeting of the BICA Society (IOS Press, Amsterdam, 2010), pp. 195–244. Google Scholar
  68. 68.
    S. Sarma, N. Dutt, P. Gupta, A. Nicolau, N. Venkatasubramanian, On-chip self-awareness using cyberphysical-systems-on-chip (CPSOC), in Proceedings of the 2014 International Conference on Hardware/Software Codesign and System Synthesis, CODES ’14 (ACM, New York, NY, 2014), pp. 22:1–22:3. doi:10.1145/2656075.2661648.
  69. 69.
    K.R. Thórisson, From constructionist to constructivist ai, in AAAI Fall Symposium: Biologically Inspired Cognitive Architectures (2009)Google Scholar
  70. 70.
    K.R. Thórisson, A New Constructivist AI: From Manual Methods to Self-constructive Systems (2012). doi:10.2991/978-94-91216-62-6_9 CrossRefGoogle Scholar
  71. 71.
    K.R. Thórisson, A new constructivist ai: from manual methods to self-constructive systems, in Theoretical Foundations of Artificial General Intelligence, Atlantis Thinking Machines, vol. 4, ed. by P. Wang, B. Goertzel (Atlantis Press, Amsterdam, 2012), pp. 145–171CrossRefGoogle Scholar
  72. 72.
    K.R. Thórisson, H.P. Helgason, Cognitive architectures and autonomy: a comparative review. J. Artif. Gen. Intell. 3 (2), 1–30 (2012). doi:10.2478/v10229-011-0015-3. CrossRefGoogle Scholar
  73. 73.
    K.R. Thórisson, H. Benko, D. Abramov, A. Arnold, S. Maskey, A. Vaseekaran, Constructionist design methodology for interactive intelligences. AI Mag. 25 (4), 77 (2004)Google Scholar
  74. 74.
    M.Törngren, A. Qamar, M. Biehl, F. Loiret, J. El-khoury, Integrating viewpoints in the development of mechatronic products. Mechatronics 24 (7), 745–762 (2014)CrossRefGoogle Scholar
  75. 75.
    A.M. Turing, Computing machinery and intelligence. Mind 59 (236), 433–460 (1950). MathSciNetCrossRefGoogle Scholar
  76. 76.
    R. Van Gulick, Consciousness, in The Stanford Encyclopedia of Philosophy, Spring 2014 edn., ed. by E.N. Zalta (2014).
  77. 77.
    O. Wallmark et al., Design and implementation of an experimental research and concept demonstration vehicle, in Vehicle Power and Propulsion Conference (VPPC), 2014 (IEEE, 2014), pp. 1–6. doi:10.1109/VPPC.2014.7007042
  78. 78.
    J. Westman, M. Nyberg, A reference example on the specification of safety requirements using ISO 26262, in SAFECOMP 2013 - Workshop DECS (ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical Systems) of the 32nd International Conference on Computer Safety, Reliability and Security, France, ed. by M. Roy p NA (2013).
  79. 79.
    J. Westman, M. Nyberg, M. Törngren, Structuring safety requirements in ISO 26262 using contract theory, in Computer Safety, Reliability, and Security, ed. by F. Bitsch, J. Guiochet, M. Kaâniche. Lecture Notes in Computer Science, vol. 8153 (Springer, Berlin, Heidelberg, 2013), pp. 166–177Google Scholar
  80. 80.
    J. Ziegler et al., Making bertha drive: an autonomous journey on a historic route. IEEE Intell. Transp. Syst. Mag. 6 (2), 8–20 (2014). doi:10.1109/MITS.2014.2306552 CrossRefGoogle Scholar
  81. 81.
    H.P. Zima, M.L. James, P.L. Springer, Fault-tolerant on-board computing for robotic space missions. Concurr. Comput. Pract. Exp. 23 (17), 2192–2204 (2011). doi:10.1002/cpe.1768. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations