Advertisement

Calixarenes and Resorcinarenes at Interfaces

  • Ludovico Tulli
  • Patrick Shahgaldian
Chapter

Abstract

This chapter summarizes the most recent developments in the fabrication and potential applications of calixarenes- and resorcinarenes-based thin films on liquid and solid surfaces. The large range of possible chemical modifications of the parent macrocycles allows fine-tuning the self-assembly properties of these macrocycles at interfaces. The focus in this chapter is done on the different synthetic routes to calixarene- or resorcinarene-based macrocycles able of self-assembly as Langmuir monolayers, Langmuir-Blodgett films, self-assembled monolayers (SAMs) on planar surfaces and on nanoparticles. Selected illustrative examples of self-assembly studies are chosen in the literature and discussed.

Keywords

Calixarenes Resorcinarenes Amphiphiles Langmuir monolayers Langmuir-Blodgett films Self-assembled monolayers Metal nanoparticles 

References

  1. 1.
    Wilde, P.; Mackie, A.; Husband, F.; Gunning, P.; Morris, V. Adv. Colloid Interface Sci. 2004, 108, 63–71.Google Scholar
  2. 2.
    MacRitchie, F. Chemistry at interfaces; Academic Press: San Diego, 1990.Google Scholar
  3. 3.
    Gaines, G. L. Insoluble monolayers at liquid-gas interfaces; Interscience Publishers: New York, 1966.Google Scholar
  4. 4.
    Franklin, B. Philos. Trans. 1774, 64, 445–460.Google Scholar
  5. 5.
    Tanford, C. The Hydrophobic Effect, 2nd edition; Wiley: NewYork, 1980.Google Scholar
  6. 6.
    Israelachvili Intermolecular and Surface forces, 3rd ed.; Academic Press: San Diego, 2011.Google Scholar
  7. 7.
    Velonia, K.; Cornelissen, J. J. L. M.; Feiters, M. C.; Rowan, A. E.; Nolte, R. J. M. In Nanoscale assembly; Huck, W. T. S., Ed.; Springer: New York.Google Scholar
  8. 8.
    Cui, H. G.; Webber, M. J.; Stupp, S. I. Biopolymers 2010, 94, 1–18.CrossRefGoogle Scholar
  9. 9.
    Amphiphiles: Molecular Assembly and Applications; Nagarajan, R., Ed.; ACS Symposium Series: Washington DC, 2011.Google Scholar
  10. 10.
    Jie, K. C.; Zhou, Y. J.; Yao, Y.; Huang, F. H. Chem. Soc. Rev. 2015, 44, 3568–3587.CrossRefGoogle Scholar
  11. 11.
    Lucke, A.; Stirling, C. J. M.; Böhmer, V. In Calixarene 2001; Asfari, Z., Böhmer, V., Harrowfield, J., Eds.; Kluwer Academic Publisher: Dordrecht.Google Scholar
  12. 12.
    Helttunen, K.; Shahgaldian, P. New J. Chem. 2010, 34, 2704–2714.Google Scholar
  13. 13.
    Montasser, I.; Shahgaldian, P.; Perret, F.; Coleman, A. W. Int. J. Mol. Sci. 2013, 14, 21899–21942.CrossRefGoogle Scholar
  14. 14.
    Shahgaldian, P. Chimia 2010, 64, 427–427.CrossRefGoogle Scholar
  15. 15.
    Gutsche, C. D.; Dhawan, B.; Levine, J. A.; Hyun No, K.; Bauer, L. J. Tetrahedron 1983, 39, 409–426.CrossRefGoogle Scholar
  16. 16.
    Iwamoto, K.; Araki, K.; Shinkai, S. Tetrahedron 1991, 47, 4325–4342.CrossRefGoogle Scholar
  17. 17.
    Groenen, L. C.; Ruël, B. H. M.; Casnati, A.; Timmerman, P.; Verboom, W.; Harkema, S.; Pochini, A.; Ungaro, R.; Reinhoudt, D. N. Tetrahedron Lett. 1991, 32, 2675–2678.CrossRefGoogle Scholar
  18. 18.
    Nakamoto, Y.; Kallinowski, G.; Bohmer, V.; Vogt, W. Langmuir 1989, 5, 1116–1117.CrossRefGoogle Scholar
  19. 19.
    Shahgaldian, P.; Coleman, A. W.; Kalchenko, V. I. Tetrahedron Lett. 2001, 42, 577–579.CrossRefGoogle Scholar
  20. 20.
    Jebors, S.; Fache, F.; Balme, S.; Devoge, F.; Monachino, M.; Cecillon, S.; Coleman, A. W. Org. Biomol. Chem. 2008, 6, 319–329.CrossRefGoogle Scholar
  21. 21.
    Hoegberg, A. G. S. J. Org. Chem. 1980, 45, 4498–4500.CrossRefGoogle Scholar
  22. 22.
    Gutsche, C. D.; Pagoria, P. F. J. Org. Chem. 1985, 50, 5795–5802.CrossRefGoogle Scholar
  23. 23.
    Shinkai, S.; Araki, K.; Tsubaki, T.; Arimura, T.; Manabe, O. J. Chem. Soc., Perkin Trans. 1 1987, 2297–2299.CrossRefGoogle Scholar
  24. 24.
    Dondoni, A.; Marra, A.; Scherrmann, M. C.; Casnati, A.; Sansone, F.; Ungaro, R. Chem. Eur. J. 1997, 3, 1774–1782.CrossRefGoogle Scholar
  25. 25.
    Düker, M. H.; Gómez, R.; Vande Velde, C. M. L.; Azov, V. A. Tetrahedron Lett. 2011, 52, 2881–2884.CrossRefGoogle Scholar
  26. 26.
    Gutsche, C. D.; Nam, K. C. J. Am. Chem. Soc. 1988, 110, 6153–6162.CrossRefGoogle Scholar
  27. 27.
    Verboom, W.; Durie, A.; Egberink, R. J. M.; Asfari, Z.; Reinhoudt, D. N. J. Org. Chem. 1992, 57, 1313–1316.CrossRefGoogle Scholar
  28. 28.
    Hayashida, O.; Mizuki, K.; Akagi, K.; Matsuo, A.; Kanamori, T.; Nakai, T.; Sando, S.; Aoyama, Y. J. Am. Chem. Soc. 2003, 125, 594–601.CrossRefGoogle Scholar
  29. 29.
    Shahgaldian, P.; Pieles, U.; Hegner, M. Langmuir 2005, 21, 6503–6507.CrossRefGoogle Scholar
  30. 30.
    Lee, M.; Lee, S. J.; Jiang, L. H. J. Am. Chem. Soc. 2004, 126, 12724–12725.CrossRefGoogle Scholar
  31. 31.
    Rodik, R. V.; Klymchenko, A. S.; Jain, N.; Miroshnichenko, S. I.; Richert, L.; Kalchenko, V. I.; Mely, Y. Chem. Eur. J. 2011, 17, 5526–5538.CrossRefGoogle Scholar
  32. 32.
    Strobel, M.; Kita-Tokarczyk, K.; Taubert, A.; Vebert, C.; Heiney, P. A.; Chami, M.; Meier, W. Adv. Funct. Mater. 2006, 16, 252–259.CrossRefGoogle Scholar
  33. 33.
    Tulli, L. G.; Moradi, M.; Jung, T. A.; Shahgaldian, P. Unpublished results.Google Scholar
  34. 34.
    Moridi, N.; Elend, D.; Danylyuk, O.; Suwinska, K.; Shahgaldian, P. Langmuir 2011, 27, 9116–9121.CrossRefGoogle Scholar
  35. 35.
    Markowitz, M. A.; Bielski, R.; Regen, S. L. Langmuir 1989, 5, 276–278.CrossRefGoogle Scholar
  36. 36.
    Vollhardt, D.; Gloede, J.; Weidemann, G.; Rudert, R. Langmuir 2003, 19, 4228–4234.CrossRefGoogle Scholar
  37. 37.
    Van der Heyden, A.; Regnouf-de-Vains, J.-B.; Warszyński, P.; Dalbavie, J.-O.; Żywociński, A.; Rogalska, E. Langmuir 2002, 18, 8854–8861.CrossRefGoogle Scholar
  38. 38.
    Shahgaldian, P.; Cesario, M.; Goreloff, P.; Coleman, A. W. Chem. Commun. 2002, 326–327.Google Scholar
  39. 39.
    Shahgaldian, P.; Coleman, A. W.; Kuduva, S. S.; Zaworotko, M. J. Chem. Commun. 2005, 1968–1970.Google Scholar
  40. 40.
    Lonetti, B.; Lo Nostro, P.; Ninham, B. W.; Baglioni, P. Langmuir 2005, 21, 2242–2249.CrossRefGoogle Scholar
  41. 41.
    Houel, E.; Lazar, A.; Da Silva, E.; Coleman, A. W.; Solovyov, A.; Cherenok, S.; Kalchenko, V. I. Langmuir 2002, 18, 1374–1379.CrossRefGoogle Scholar
  42. 42.
    Korchowiec, B.; Orlof, M.; Sautrey, G.; Ben Salem, A.; Korchowiec, J.; Regnouf-de-Vains, J. B.; Rogalska, E. J. Phys. Chem. B 2010, 114, 10427–10435.CrossRefGoogle Scholar
  43. 43.
    Ishikawa, Y.; Kunitake, T.; Matsuda, T.; Otsuka, T.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1989, 736–738.Google Scholar
  44. 44.
    Shahgaldian, P.; Coleman, A. W. Langmuir 2001, 17, 6851–6854.CrossRefGoogle Scholar
  45. 45.
    Tulli, L. G.; Wang, W.; Lindemann, W. R.; Kuzmenko, I.; Meier, W.; Vaknin, D.; Shahgaldian, P. Langmuir 2015, 31, 2351–2359.CrossRefGoogle Scholar
  46. 46.
    Guo, X.; Lu, G. Y.; Li, Y. Thin Solid Films 2004, 460, 264–268.CrossRefGoogle Scholar
  47. 47.
    Zadmard, R.; Arendt, M.; Schrader, T. J. Am. Chem. Soc. 2004, 126, 7752–7753.CrossRefGoogle Scholar
  48. 48.
    Shahgaldian, P.; Sciotti, M. A.; Pieles, U. Langmuir 2008, 24, 8522–8526.CrossRefGoogle Scholar
  49. 49.
    Moridi, N.; Danylyuk, O.; Suwinska, K.; Shahgaldian, P. J. Colloid Interface Sci. 2012, 377, 450–455.Google Scholar
  50. 50.
    Rullaud, V.; Moridi, N.; Shahgaldian, P. Langmuir 2014, 30, 8675–8679.CrossRefGoogle Scholar
  51. 51.
    LoNostro, P.; Casnati, A.; Bossoletti, L.; Dei, L.; Baglioni, P. Colloid Surface A 1996, 116, 203–209.CrossRefGoogle Scholar
  52. 52.
    Tulli, L. G.; Moridi, N.; Wang, W.; Helttunen, K.; Neuburger, M.; Vaknin, D.; Meier, W.; Shahgaldian, P. Chem. Commun. 2014, 50, 3938–3940.CrossRefGoogle Scholar
  53. 53.
    Zadmard, R.; Schrader, T. J. Am. Chem. Soc. 2005, 127, 904–915.CrossRefGoogle Scholar
  54. 54.
    Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J. P. Adv. Mater. 2013, 25, 6477–6512.CrossRefGoogle Scholar
  55. 55.
    Hansma, H. G.; Gould, S. A. C.; Hansma, P. K.; Gaub, H. E.; Longo, M. L.; Zasadzinski, J. A. N. Langmuir 1991, 7, 1051–1054.CrossRefGoogle Scholar
  56. 56.
    Markowitz, M. A.; Bielski, R.; Regen, S. L. J. Am. Chem. Soc. 1988, 110, 7545–7546.CrossRefGoogle Scholar
  57. 57.
    Yan, X.; Janout, V.; Hsu, J. T.; Regen, S. L. J. Am. Chem. Soc. 2003, 125, 8094–8095.CrossRefGoogle Scholar
  58. 58.
    Moridi, N.; Wackerlin, C.; Rullaud, V.; Schelldorfer, R.; Jung, T. A.; Shahgaldian, P. Chem. Commun. 2013, 49, 367–369.CrossRefGoogle Scholar
  59. 59.
    Ulman, A. Chem. Rev. 1996, 96, 1533–1554.CrossRefGoogle Scholar
  60. 60.
    Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103–1169.CrossRefGoogle Scholar
  61. 61.
    Schierbaum, K. D.; Weiss, T.; Vanvelzen, E. U. T.; Engbersen, J. F. J.; Reinhoudt, D. N.; Gopel, W. Science 1994, 265, 1413–1415.CrossRefGoogle Scholar
  62. 62.
    Schonherr, H.; Vancso, G. J. Langmuir 1999, 15, 5541–5546.CrossRefGoogle Scholar
  63. 63.
    Vanvelzen, E. U. T.; Engbersen, J. F. J.; Delange, P. J.; Mahy, J. W. G.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 6853–6862.CrossRefGoogle Scholar
  64. 64.
    Huisman, B. H.; Vanvelzen, E. U. T.; Vanveggel, F. C. J. M.; Engbersen, J. F. J.; Reinhoudt, D. N. Tetrahedron Lett. 1995, 36, 3273–3276.CrossRefGoogle Scholar
  65. 65.
    Obora, Y.; Liu, Y. K.; Jiang, L. H.; Takenaka, K.; Tokunaga, M.; Tsuji, Y. Organometallics 2005, 24, 4–6.CrossRefGoogle Scholar
  66. 66.
    Nigra, M. M.; Ha, J. M.; Katz, A. Catal. Sci. Technol. 2013, 3, 2976–2983.CrossRefGoogle Scholar
  67. 67.
    Ta, V. T.; Nimse, S. B.; Song, K. S.; Kim, J.; Sayyed, D. R.; Nguyen, V. T.; Kim, T. Chem. Commun. 2011, 47, 11261–11263.CrossRefGoogle Scholar
  68. 68.
    Demirkol, D. O.; Yildiz, H. B.; Sayin, S.; Yilmaz, M. RSC Adv. 2014, 4, 19900–19907.CrossRefGoogle Scholar
  69. 69.
    Cormode, D. P.; Evans, A. J.; Davis, J. J.; Beer, P. D. Dalton Trans. 2010, 39, 6532–6541.CrossRefGoogle Scholar
  70. 70.
    Zhang, S.; Echegoyen, L. Org. Lett. 2004, 6, 791–794.CrossRefGoogle Scholar
  71. 71.
    Benounis, M.; Jaffrezic, N.; Martelet, C.; Dumazet-Bonnamour, I.; Lamartine, R. Mater. Trans. 2015, 56, 539–544.CrossRefGoogle Scholar
  72. 72.
    de Oliveira, I. A. M.; Vocanson, F.; Uttaro, J. P.; Asfari, Z.; Mills, C. A.; Samitier, J.; Errachid, A. J. Nanosci. Nanotechnol. 2010, 10, 413–420.CrossRefGoogle Scholar
  73. 73.
    Xu, S. B.; Podoprygorina, G.; Moon, C.; Bohmer, V.; Ding, Z. F.; Mittler, S. Electrochim. Acta 2008, 53, 7981–7987.CrossRefGoogle Scholar
  74. 74.
    Arena, G.; Contino, A.; Longo, E.; Sgarlata, C.; Spoto, G.; Zito, V. Chem. Commun. 2004, 1812–1813.Google Scholar
  75. 75.
    Zhang, S.; Song, F. Y.; Echegoyen, L. Eur. J. Org. Chem. 2004, 2936–2943.Google Scholar
  76. 76.
    Park, J. Y.; Kim, B. C.; Park, S. M. Anal. Chem. 2007, 79, 1890–1896.CrossRefGoogle Scholar
  77. 77.
    Zhang, S.; Palkar, A.; Echegoyen, L. Langmuir 2006, 22, 10732–17038.CrossRefGoogle Scholar
  78. 78.
    Zhang, G. F.; Zhu, X. L.; Miao, F. J.; Tian, D. M.; Li, H. B. Org. Biomol. Chem. 2012, 10, 3185–3188.CrossRefGoogle Scholar
  79. 79.
    Friggeri, A.; van Veggel, F. C. J. M.; Reinhoudt, D. N. Chem. Eur. J. 1999, 5, 3595–3602.CrossRefGoogle Scholar
  80. 80.
    Friggeri, A.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Kooyman, R. P. H. Langmuir 1998, 14, 5457–5463.CrossRefGoogle Scholar
  81. 81.
    Chen, H. X.; Jia, S. S.; Gao, Y. M.; Liu, F. Z.; Chen, X. Y.; Koh, K.; Wang, K. M. Microchim. Acta 2015, 182, 1757–1763.CrossRefGoogle Scholar
  82. 82.
    Snejdarkova, M.; Poturnayova, A.; Rybar, P.; Lhotak, P.; Himl, M.; Flidrova, K.; Hianik, T. Bioelectrochemistry 2010, 80, 55–61.CrossRefGoogle Scholar
  83. 83.
    Nakaji-Hirabayashi, T.; Endo, H.; Kawasaki, H.; Gemmei-Ide, M.; Kitano, H. Environ. Sci. Technol. 2005, 39, 5414–5420.CrossRefGoogle Scholar
  84. 84.
    Feng, N. M.; Zhao, H. Y.; Zhan, J. Y.; Tian, D. M.; Li, H. B. Org. Lett. 2012, 14, 1958–1961.CrossRefGoogle Scholar
  85. 85.
    Boccia, A.; D’Orazi, F.; Carabelli, E.; Bussolati, R.; Arduini, A.; Secchi, A.; Marrani, A. G.; Zanoni, R. Chem. Eur. J. 2013, 19, 7999–8006.CrossRefGoogle Scholar
  86. 86.
    Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Acc. Chem. Res. 2008, 41, 1578–1586.CrossRefGoogle Scholar
  87. 87.
    Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Chem. Rev. 2015, 115, 10410–10488.CrossRefGoogle Scholar
  88. 88.
    Zhou, W.; Gao, X.; Liu, D. B.; Chen, X. Y. Chem. Rev. 2015, 115, 10575–10636.CrossRefGoogle Scholar
  89. 89.
    Prins, L. J. Acc. Chem. Res. 2015, 48, 1920–1928.Google Scholar
  90. 90.
    Tu, C. L.; Li, G. L.; Shi, Y. F.; Yu, X.; Jiang, Y.; Zhu, Q.; Liang, J. M.; Gao, Y.; Yan, D. Y.; Sun, J.; Zhu, X. Y. Chem. Commun. 2009, 3211–3213.Google Scholar
  91. 91.
    Sutariya, P. G.; Pandya, A.; Lodha, A.; Menon, S. K. Talanta 2016, 147, 590–597.CrossRefGoogle Scholar
  92. 92.
    Vita, F.; Boccia, A.; Marrani, A. G.; Zanoni, R.; Rossi, F.; Arduini, A.; Secchi, A. Chem. Eur. J. 2015, 21, 15428–15438.Google Scholar
  93. 93.
    Kaur, H.; Singh, J.; Chopra, S.; Kaur, N. Talanta 2016, 146, 122–129.CrossRefGoogle Scholar
  94. 94.
    Maity, D.; Kumar, A.; Gunupuru, R.; Paul, P. Colloid Surface A 2014, 455, 122–128.CrossRefGoogle Scholar
  95. 95.
    Kim, H. J.; Lee, M. H.; Mutihac, L.; Vicens, J.; Kim, J. S. Chem. Soc. Rev. 2012, 41, 1173–1190.CrossRefGoogle Scholar
  96. 96.
    Tshikhudo, T. R.; Demuru, D.; Wang, Z. X.; Brust, M.; Secchi, A.; Arduini, A.; Pochini, A. Angew. Chem. Int. Ed. 2005, 44, 2913–2916.Google Scholar
  97. 97.
    Arduini, A.; Demuru, D.; Pochini, A.; Secchi, A. Chem. Commun. 2005, 645–647.Google Scholar
  98. 98.
    Sokkalingam, P.; Hong, S. J.; Aydogan, A.; Sessler, J. L.; Lee, C. H. Chem. Eur. J. 2013, 19, 5860–5867.CrossRefGoogle Scholar
  99. 99.
    Pandya, A.; Sutariya, P. G.; Menon, S. K. Analyst 2013, 138, 2483–2490.CrossRefGoogle Scholar
  100. 100.
    Patel, G.; Menon, S. Chem. Commun. 2009, 3563–3565.Google Scholar
  101. 101.
    Wei, A. Chem. Commun. 2006, 1581–1591.Google Scholar
  102. 102.
    Li, H.; Tan, L. L.; Jia, P.; Li, Q. L.; Sun, Y. L.; Zhang, J.; Ning, Y. Q.; Yu, J. H.; Yang, Y. W. Chem. Sci. 2014, 5, 2804–2808.Google Scholar
  103. 103.
    Zhou, Y.; Tan, L. L.; Li, Q. L.; Qiu, X. L.; Qi, A. D.; Tao, Y. C.; Yang, Y. W. Chem. Eur. J. 2014, 20, 2998–3004.Google Scholar
  104. 104.
    Sun, Y. L.; Zhou, Y.; Li, Q. L.; Yang, Y. W. Chem. Commun. 2013, 49, 9033–9035.CrossRefGoogle Scholar
  105. 105.
    Yang, Y. W. Chemphyschem : a European journal of chemical physics and physical chemistry 2015.Google Scholar
  106. 106.
    Ciesa, F.; Plech, A.; Mattioli, C.; Pescatori, L.; Arduini, A.; Pochini, A.; Rossi, F.; Secchi, A. J. Phys. Chem. C 2010, 114, 13601–13607.CrossRefGoogle Scholar
  107. 107.
    Chin, S. F.; Makha, M.; Raston, C. L.; Saunders, M. Chem. Commun. 2007, 1948–1950.Google Scholar
  108. 108.
    Pescatori, L.; Boccia, A.; Ciesa, F.; Rossi, F.; Grillo, V.; Arduini, A.; Pochini, A.; Zanoni, R.; Secchi, A. Chem. Eur. J. 2010, 16, 11089–11099.CrossRefGoogle Scholar
  109. 109.
    Zang, W. Z.; Chen, X. J.; Boulos, R. A.; Toster, J.; Raston, C. L. Chem. Commun. 2014, 50, 15167–15170.CrossRefGoogle Scholar
  110. 110.
    de Silva, N.; Ha, J. M.; Solovyov, A.; Nigra, M. M.; Ogino, I.; Yeh, S. W.; Durkin, K. A.; Katz, A. Nat. Chem. 2010, 2, 1062–1068.CrossRefGoogle Scholar
  111. 111.
    Urban, I.; Ratcliffe, N. M.; Duffield, J. R.; Elder, G. R.; Patton, D. Chem. Commun. 2010, 46, 4583–4585.CrossRefGoogle Scholar
  112. 112.
    Tauran, Y.; Grosso, M.; Brioude, A.; Kassab, R.; Coleman, A. W. Chem. Commun. 2011, 47, 10013–10015.CrossRefGoogle Scholar
  113. 113.
    Guerrini, L.; Garcia-Ramos, J. V.; Domingo, C.; Sanchez-Cortes, S. Langmuir 2006, 22, 10924–10926.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Life Sciences, Institute of Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland

Personalised recommendations