Advertisement

Calixarenes and Fullerenes

  • Paris E. GeorghiouEmail author
Chapter

Abstract

Since the seminal contemporaneous discovery by Atwood and Shinkai in 1994 that p-tert-butylcalix[8]arene could sequester and thus purify C60 from fullerite, the supramolecular relationships between bowl-shaped calixarenes and the fullerenes have continued to stimulate the interest of chemists. This review presents and summarizes the literature pertaining to calixarenes and C60 and C70 which has appeared since the end of 2000. The present review will also only focus mostly on examples in which calix[n]arenes, related molecules and their functionalized derivatives have been mainly associated with “pristine” C60 and C70 fullerenes.

Keywords

Calix[n]arenes C60 fullerene C70 fullerene Association constants Binding constants Supramolecular complexation Host-guest complexation Calix[n]naphthalenes Calix[n]azulenes Triptycene Calix[n]pyrroles Azacalix[n]pyridines Azacalix[n]pyridine[m]pyrimidines Tetrathiafulvalene N-heterocyclic carbene-bridged calix[n]arenes p-Sulfonatocalix[n]arene 

References

  1. 1.
    Zhong, Z-L.; Ikeda A.; S. Shinkai, In Calixarenes 2001 pp 476–495; Eds. Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J., Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  2. 2.
    Lhotak, P.; Kundrat, O. In Artificial Receptors for Chemical Sensors pp 249–272; Eds. Mirsky, V. M.; Yatsimirsky, A. K. Wiley-VCH, Weinheim, 2011.Google Scholar
  3. 3.
    Georghiou, P. E., pp 391–403, In Handbook of Carbon Nanotubes, 1st Ed., Eds.: D'Souza, F.; Kadish, K. M., World Scientific, Singapore, 2011.Google Scholar
  4. 4.
    Kawase, T., In Supramolecular chemistry of fullerenes and carbon nanotubes, pp 55–78 Eds. Martin, N.; Nierengarten, J.-F. Wiley-VCH Weinheim, 2012.CrossRefGoogle Scholar
  5. 5.
    (a) Atwood, J. L.; Koutsantonis, G. A.; Raston, C. L. Nature 1994, 368, 229. (b) Suzuki, T. Nakashima, K.; Shinkai, S. Chem. Lett. 1994, 699.Google Scholar
  6. 6.
    Chen, X.; Boulos, R. A.; Slattery, A. D.; Atwood, J. L.; Raston, C. L. Chem. Commun. 2015, 51, 11413–11416.CrossRefGoogle Scholar
  7. 7.
    Raston, C. L.; Atwood, J. L.; Nichols, P. J.; Sudria, I. B. N. Chem. Commun. 1996, 2615–2616.Google Scholar
  8. 8.
    Makha, M.; Evans, C. W.; Sobolev, A. N.; Raston, C. R. Cryst. Growth Des. 2008, 8, 2929–2932.CrossRefGoogle Scholar
  9. 9.
    Atwood, J. L.; Barbour, L. J.; Raston, C. L.; Sudria, I. B. N. Angew. Chem. Int. Ed. 1998, 37, 981.CrossRefGoogle Scholar
  10. 10.
    Makha, M.; Raston, C. L.; Sobolev, A. N.; Turner, P. Cryst. Growth Des. 2006, 6, 224–228.CrossRefGoogle Scholar
  11. 11.
    Flidrova, K.; Liska, A.; Ludvik, J.; Eigner, V.; Lhotak, P. Tetrahedron Lett. 2015, 56, 1535–1538.CrossRefGoogle Scholar
  12. 12.
    Hubble, L. J.; Raston, C. L. Chem Eur J. 2007, 13, 6755–6760.CrossRefGoogle Scholar
  13. 13.
    Hubble, L. J.; Barbour, L. J.; Heaven, M. W.; Raston, C. L. Chem. Commun. 2003, 18, 2270–2271.Google Scholar
  14. 14.
    Atwood, J. L.; Barbour, L. J.; Heaven, M. W.; Raston, C. L. Angew. Chem. Int. Ed. 2003, 42, 3254–3257.CrossRefGoogle Scholar
  15. 15.
    Atwood, J. L.; Barbour, L. J.; Raston, C. L. Cryst. Growth Des. 2002, 2, 3–6.CrossRefGoogle Scholar
  16. 16.
    Makha, M.; Raston, C. L.; Sobolev, A. N.; Barbour, L. J.; Turner, P. Cryst. Eng. Comm. 2006, 8, 306–308.CrossRefGoogle Scholar
  17. 17.
    Busolo, F.; Silvestrini, S.; Armelao, L.; Maggini, M. J. Chem. Phys. 2013, 139, 164715–164718.CrossRefGoogle Scholar
  18. 18.
    Carrillo-Carrion, C.; Lendl, B. M.; Simonet, B. M.; Valcarcel, M. Anal. Chem. 2011, 83, 8093–8100.CrossRefGoogle Scholar
  19. 19.
    Jin, W. J.; Fernández-Argüelles, M. T.; Costa-Fernández, J. M.; R. Pereiro, Sanz-Medel, A. Chem. Commun. 2005, 883–885.Google Scholar
  20. 20.
    Zhang, S.; Echegoyen, L. J. Org. Chem. 2005 , 70, 9874–9881.CrossRefGoogle Scholar
  21. 21.
    Zhang, S.; Echegoyen, L. C. R. Chimie 2006, 9, 1031–1037.CrossRefGoogle Scholar
  22. 22.
    Pan, G-B.; Liu, J-M.; Zhang, H-M.; Wan, L-J.; Zheng, Q-Y.; Bai, C-L. Angew. Chem. Int. Ed. Engl. 2003, 42, 2747–2751.CrossRefGoogle Scholar
  23. 23.
    Gonzalez-Delgado, A. M.; Giner-Casares, J. J.; Brezesinski, G.; Regnouf-de-Vains, J.-B.; Camacho, L. Langmuir, 2012, 28, 12114–12121.CrossRefGoogle Scholar
  24. 24.
    24(a) Georghiou, P. E.; Tran, A.-H.; Stroud, S. S.; Thompson, D. W. Tetrahedron, 2006, 62, 2036–2044. (b) Mizyed, S.; Tremaine, P. R.; Georghiou, P. E. J. Chem. Soc. Perkin Trans. 2, 2001, 3-6. (c) Mizyed, S.; Chowdhury, S.; Georghiou, P. E.; Mizyed, S.; Chowdhury, S. Tetrahedron Lett. 1999, 40, 611–614.Google Scholar
  25. 25.
    See for example: Stella, L.; Capadilupo, A. L.; Bietti, M. Chem. Commun. 2008, 39, 4744–4746.Google Scholar
  26. 26.
    Fielding, L. Tetrahedron 2000, 56, 6151–6170.CrossRefGoogle Scholar
  27. 27.
    Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703–2707.CrossRefGoogle Scholar
  28. 28.
    Thordarson, P. Chem. Soc. Rev. 2011, 40, 1305–1323; and for an alternative on-line non-linear computational method see http://www.supramolecular.org.
  29. 29.
    Bhattacharya, S.; Nayak, S. K.; Chattopadhyay, S.; Banerjee, M.; Mukherjee, A. K. J. Chem. Soc., Perkin Trans. 2 2001, 12, 2292–2297.Google Scholar
  30. 30.
    Bhattacharya, S.; Nayak, S. K.; Semwal,. A.; Chattopadhyay, S.; Banerjee, M. J. Phys. Chem. A 2004, 108, 9064–9068.Google Scholar
  31. 31.
    Bhattacharya, S.; Nayak, S. K.; Semwal, A.; Banerjee, M. Spectrochim. Acta, A 2005, 61, 595–606.Google Scholar
  32. 32.
    Bhattacharya, S.; Nayak, S. K.; Chattopadhyay, S.; Banerjee, M.; Mukherjee, A. K. Spectrochim. Acta, A 2005, 61, 321–329.Google Scholar
  33. 33.
    Bhattacharya, S.; Nayak, S. K.; Chattopadhyay, S.; Banerjee, M.; Mukherjee, A. K. J. Phys. Chem. B, 2003, 107, 11830–11834.Google Scholar
  34. 34.
    Bhattacharya, S.; Nayak, S. K.; Chattopadhyay, S.; Banerjee, M. Spectrochim. Acta, A 2006, 63, 200–206.Google Scholar
  35. 35.
    Halder, A.; Goswami, D.; Nayak, S. K.; Chattopadhyay, S.; Bhattacharya, S. J. Mol. Struct. 2009, 936, 112–117.CrossRefGoogle Scholar
  36. 36.
    Bhattacharya, S.; Chattopadhyay, S.; Nayak, S. K., Banerjee, M. Spectrochim. Acta, A: Mol. Biomol. Spect. 2005, 62, 729–735.Google Scholar
  37. 37.
    Halder, A.; Nayak, S. K.; Chattopadhyay, S.; Bhattacharya, S. J. Mol. Liquids 2010, 151, 125–129.CrossRefGoogle Scholar
  38. 38.
    Halder, A.; Sandip; S. K.; Chattopadhyay, S.; Bhattacharya, S. J. Solution Chem. 2012, 41, 223–240.Google Scholar
  39. 39.
    Halder, A.; Kundu, K.; Nayak, S. K.; Chattopadhyay, S.; Bhattacharya, S. Spectrochim. Acta, A: Mol. Biomol. Spect. 2012, 93, 384–389.Google Scholar
  40. 40.
    Mizyed, S. A.; Al-Jarrah E.; Deeb, M.; Muhammad, A. Spectrochim. Acta, A: Mol. Biomol. Spect. 2007, 68A, 1274–1277.Google Scholar
  41. 41.
    Mizyed, S.; Ashram, M.; Miller, D. O.; Georghiou, P. E. J. Chem. Soc. Perkin Trans. 2 2001, 10, 1916–1919.Google Scholar
  42. 42.
    Asao, T.; Ito, S.; Morita, N. Tetrahedron Lett. 1988, 29, 2839–2842.CrossRefGoogle Scholar
  43. 43.
    Colby D. A.; Lash, T. D. J. Org. Chem. 2002, 67, 1031–1033.CrossRefGoogle Scholar
  44. 44.
    Lash, T.D.; El-Beck J.A.; Colby, D.A. J. Org. Chem. 2009, 74, 8830–8833.CrossRefGoogle Scholar
  45. 45.
    Georghiou, P. E.; Schneider, C.; Shamov, G.; Lash, T. D.; Rahman S.; Giddings, S. Supramol. Chem. 201628, 396–402 . b) Unpublished results.Google Scholar
  46. 46.
    Al Hujran, T. A.; Dawe, L.N.; Georghiou, P. E. Org. Lett. 2012, 14, 3530–3533.CrossRefGoogle Scholar
  47. 47.
    Connors, K. A. Binding Constants, John Wiley & Sons, New York, 1987.Google Scholar
  48. 48.
    a) Iglesias-Sanchez, J. C.; Souto, B.; Pastor, C. J.; de Mendoza, J.; Prados, P. J. Org. Chem. 2005, 70, 10400–10407; b) Galan, H.; de Mendoza, J.; Prados, P. Eur. J. Org. Chem. 2005, 4093–4097; c) Liu, J.-M.; Zheng, Q.-Y.; Chen, C.-F.; Huang, Z.-T. Tetrahedron 2007, 63, 9939–9946; d) Menand, M.; Jabin, I. Org. Lett. 2009, 11, 673–676.Google Scholar
  49. 49.
    Tian, X.-H.; Chen, C.-F. Chem. Eur. J. 2010, 16, 8072–8079.CrossRefGoogle Scholar
  50. 50.
    Chen C.-F. Chem. Commun. 2011, 47, 1674–1688.CrossRefGoogle Scholar
  51. 51.
    Ma, Y.-X.; Han, Y.; Chen, C.-F. J. Incl. Phenom. Macro. Chem. 2014, 79, 261–281, and references cited therein. CrossRefGoogle Scholar
  52. 52.
    Xie, T.; Hu, S.-Z.; Chen C.-F. J. Org. Chem. 2013, 78, 981–987.CrossRefGoogle Scholar
  53. 53.
    Hu, S.-Z.; Chen, C.-F. Chem. Commun. 2010, 46, 4199–4201.CrossRefGoogle Scholar
  54. 54.
    For a recent review on thiacalixarenes, see: Kumar, R.; Lee, Y. O.; Bhalla, V.; Kumar, M.; Kim, J. S. Chem. Soc. Rev. 2014, 43, 4824–4870.Google Scholar
  55. 55.
    Dudic, M.; Lhotak, P.; Stibor, I.; Petrickova, H.; Lang, K. New J. Chem. 2004, 28, 85–90.CrossRefGoogle Scholar
  56. 56.
    Kas, M.; Lang, K.; Stibor, I.; Lhotak, P. Tetrahedron Lett. 2007, 48, 477–481.CrossRefGoogle Scholar
  57. 57.
    Kundrat, O.; Kas, M.; Tkadlecova, M.; Lang, K.; Cvacka, J.; Stibor, I.; Lhotak, P. Tetrahedron Lett. 2007, 48, 6620–6623.CrossRefGoogle Scholar
  58. 58.
    Bi, Y.; Liao, W.; Wang, X.; Wang, X.; Zhang, H. Dalton Trans. 2011, 40, 1849–1851.CrossRefGoogle Scholar
  59. 59.
    Vysotsky, M.; Saadioui, M.; Böhmer, V. In Calixarenes 2001 pp 250–252; Eds. Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J., Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  60. 60.
    Nielsen, K. A.; Cho, W.-S.; Sarova, G. H.; Petersen, B. M.; Bond, A. D.; Becher, J.; Jensen, F.; Guldi, D. M.; Sessler, J. L.; Jeppesen, J. O. Angew. Chem. Int. Ed. 2006, 45, 6848–6853.CrossRefGoogle Scholar
  61. 61.
    Fukuzumi, S.; Ohkubo, K.; Kawashima, Y.; Kim, Dong S.; Park, J. S.; Jana, A.; Lynch, V. M.; Kim, D.; Sessler, J. L. J. Am. Chem. Soc. 2011, 133, 15938–15941.CrossRefGoogle Scholar
  62. 62.
    Pal, D.; Goswami, D.; Nayak,S. K.; Chattopadhyay, S.; Bhattacharya, S. J. Phys. Chem. A 2010, 114, 6776–6786.Google Scholar
  63. 63.
    Wang, M.-X.; Zhang, X.-H.; Zheng, Q.-Y. Angew. Chem. Int. Ed. 2004, 43, 838–842.CrossRefGoogle Scholar
  64. 64.
    Wu, J.-C.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Tetrahedron Lett. 2009, 50, 7209–7212.CrossRefGoogle Scholar
  65. 65.
    Liu, S.-Q.; Wang, D.-X.; Zheng, Q.-Y.; Wang, M.-X. Chem. Commun. 2007, 37, 3856–3858CrossRefGoogle Scholar
  66. 66.
    Zhang, E.-X.; Wang, D.-X.; Zheng, Q.-Y.; Wang, M.-X. Org. Lett. 2008, 10, 2565–2568.CrossRefGoogle Scholar
  67. 67.
    Gong, H.-Y.; Zhang, X.-H.; Wang, D.-X.; Ma, H.-W.; Zheng, Q.-Y.; Wang, M.-X. Chem. Eur. J. 2006, 12, 9262–9275.CrossRefGoogle Scholar
  68. 68.
    Zhang, E.; Wang, D.-X; Huang, Z.; Wang, M.-X. Chin. J. Chem. 2010, 28, 1690–1696.Google Scholar
  69. 69.
    Fa, S.-X.; Wang, L.-X.; Wang, D.-X.; Zhao, L.; Wang, M.-X. J. Org. Chem. 2014, 79, 3559–3571.CrossRefGoogle Scholar
  70. 70.
    Wang, L.-X.; Zhao L.; Wang, D.-X.;. Wang M.-X. Chem. Commun. 2011, 47, 9690–9692.CrossRefGoogle Scholar
  71. 71.
    Chun, Y.; Singh, N. J.: Hwang, I.-C.; Lee, J. W.; Yu, S. U.; Kim, K. S. Nature Commun. 2013, 4, 1797–1797.CrossRefGoogle Scholar
  72. 72.
    Quin, D.; Zeng, X.; Li, Q.; Xu, F.; Song, H.; Zhang, Z.-Z. Chem. Commun. 2007, 147–149.Google Scholar
  73. 73.
    Yanase, M.; Matsuoka, M.; Tatsumi, Y.; Suzuki, M.; Iwamoto, H.; Haino, T.; Fukazawa, Y. Tetrahedron Lett. 2000, 41, 493–497.CrossRefGoogle Scholar
  74. 74.
    Haino, T.; Araki, H.; Yamanaka, Y.; Fukazawa, Y. Tetrahedron Lett. 2001, 42, 3203–3206.CrossRefGoogle Scholar
  75. 75.
    Haino, T.; Yamanaka, Y.; Araki, H.; Fukazawa, Y. Chem. Commun. 2002, 402–403.Google Scholar
  76. 76.
    Haino, T.; Yanase, M.; Fukunaga, C.; Fukazawa, Y. Tetrahedron, 2006, 62, 2025–2035.CrossRefGoogle Scholar
  77. 77.
    Haino, T.; Fukunaga, C.; Fukazawa, Y. Org. Lett. 2006, 8, 3545–3548.CrossRefGoogle Scholar
  78. 78.
    Haino, T.; Fukunaga, C.; Fukazawa, Y. J. Nanosci. Nanotechnol. 2007, 7, 1386–1388.CrossRefGoogle Scholar
  79. 79.
    Iglesias-Sanchez, J. C.; Fragoso, A.; de Mendoza, J.; Prados, P. Org. Lett. 2006, 8, 2571–2574.CrossRefGoogle Scholar
  80. 80.
    “Head-to-head” bicalix[4]arenes: (a) Neri, P.; Bottino, A.; Cunsolo, F.; Piattelli, M.; Gavuzzo, E. Angew. Chem., Int. Ed. 1998, 37, 166–169. (b) Bottino, A.; Cunsolo, M. F.; Piattelli, M.; Gavuzzo, E.; Neri, P. Tetrahedron Lett. 2000, 41, 10065–10069. Bicalix[6] and [8]arenes: (c) Bottino, A.; Cunsolo, F.; Piattelli, M.; Garozzo, D.; Neri, P. J. Org. Chem. 1999, 64, 8018–8020.Google Scholar
  81. 81.
    “Head-to-head” bicalix[5]arenes: Wang, J.; Borige, S. G.; Watson, W. H.; Gutsche, C. D. J. Org. Chem. 2000, 65, 8260–8263.Google Scholar
  82. 82.
    a) SPECFIT, version 3.0; Spectra Software Associates. (b) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbühler, A. D. Talanta 1985, 32, 95–101.(c) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbühler, A. D. Talanta 1986, 33, 943–951.Google Scholar
  83. 83.
    Mizyed, S.; Marji, D.; Rawashdeh, A. M.; Foudeh, A. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 113–118. For many other examples of narrow-rim bridged calix[n]arenes see Saadioui, M.; Böhmer, V., In Calixarenes 2001, pp130–154, Eds. Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J., Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  84. 84.
    Ghosh, K.; Semwal, A.; Nayak, S. K.; Banerjee, S. Bhattacharya; Banerjee, M. Spectrochim. Acta, A 2007, 66, 1122–1125.Google Scholar
  85. 85.
    Kunsagi-Mate, S.; Szabo, K.; Bitter, I.; Nagy, G.; Kollar, L. Tetrahedron Lett. 2004, 45, 1387–1390.CrossRefGoogle Scholar
  86. 86.
    Ling, I.; Alias, Y.; Raston, C. L. New J. Chem. 2011, 35, 1549–1555.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ChemistryMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations