Surface Treatments of Titanium with Antibacterial Agents for Implant Applications

  • Ingrid MiloševEmail author
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 60)


It was only in the twentieth century that technology enabled the isolation of metallic titanium from its minerals [1]. Thus, industrial production of titanium began relatively late, in 1946. Due to its low density and high corrosion resistance, titanium became indispensable in the aerospace industry. The use of titanium in biomedical applications dates from 1965. Commercially pure titanium and its alloy Ti–6Al–4V are the most commonly used titanium-based biomaterials, especially in orthopedics. Millions of patients are treated with various joint replacements, many patients also with other types of prostheses, such as tumor prostheses, small joint prostheses, fracture-treatment devices, etc.


Bacterial Adhesion TiO2 Nanotubes Polymer Brush Inductively Couple Plasma Mass Spectroscopy Bacterium Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank my colleague Prof. Andrej Cör, MD, PhD, of the Valdoltra Orthopaedic Hospital for critical reading of the manuscript and valuable discussions. A special thanks to my coworkers and students at the Jožef Stefan institute: B. Kapun, U. Tiringer, D. Gustinčič, and G. Šekularac for their technical help and support. Financial support by the Slovenian Research Agency is kindly acknowledged (grant No. P2-0393).


  1. 1.
    Milošev I (2011) Metallic materials for biomedical applications: laboratory and clinical studies. Pure Appl Chem 83:309–324Google Scholar
  2. 2.
    Namba RS, Inacio MC, Paxton EW (2012) Risk factors associated with surgical site infection in 30,491 primary total hip replacements. J Bone Joint Surg 94:1330–1338CrossRefGoogle Scholar
  3. 3.
    Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M (2006) Prophylaxis and treatment of implant-related infections by antibiotics-coated implants: a review. Injury 37:S105–S112CrossRefGoogle Scholar
  4. 4.
    Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34:3174–3183CrossRefGoogle Scholar
  5. 5.
    Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554CrossRefGoogle Scholar
  6. 6.
    Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366CrossRefGoogle Scholar
  7. 7.
    Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res 91B:470–480CrossRefGoogle Scholar
  8. 8.
    Durmus NG, Webster TJ (2012) Nanostructured titanium: the ideal material for improving orthopedic implant efficacy. Nanomedicine 7:791–793CrossRefGoogle Scholar
  9. 9.
    Ercan B, Webster TJ (2010) The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials 31:3684–3693CrossRefGoogle Scholar
  10. 10.
    Kulkarni M, Mazare A, Gongadze E, Pertukova Š, Kralj-Iglič V, Milošev I, Schmuki P, Iglič A, Mozetič M (2015) Titanium nanostructures for biomedical applications. Nanotechnology 26:062002 (18p)CrossRefGoogle Scholar
  11. 11.
    Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595CrossRefGoogle Scholar
  12. 12.
    Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846CrossRefGoogle Scholar
  13. 13.
    Wu Y, Zitelli JP, TenHuisen KS, Yu X, Libera MR (2011) Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials 32:951–960CrossRefGoogle Scholar
  14. 14.
    Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31:706–713CrossRefGoogle Scholar
  15. 15.
    Gallardo-Moreno AM, Pacha-Olivenza MA, Saldana L, Perez-Giraldo C, Bruque JM, Vilaboa N, González-Martín ML (2009) In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater 5:181–192CrossRefGoogle Scholar
  16. 16.
    Grigorescu S, Ungureanu C, Kirchgeorg R, Schmuki P, Demetrescu I (2012) Various sized nanotubes on TiZr for antibacterial surfaces. Appl Surf Sci 270:190–196CrossRefGoogle Scholar
  17. 17.
    Mathew D, Bhardwaj G, Wang Q, Sun L, Ercan B, Geetha M, Webster TJ (2014) Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceutical. Int J Nanomed 9:1775–1781CrossRefGoogle Scholar
  18. 18.
    Neoh KG, Hu X, Zheng D, Kang ET (2012) Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33:2813–2822CrossRefGoogle Scholar
  19. 19.
    Gowri S, Gandhi R Rajiv, Snethil S, Sundrarajan M (2015) Effect of calcination temperature of Nyctanthes plant mediated zirconia nanoparticles; optical and antibacterial activity for optimized zirconia. J Bionanosci 9:181−189Google Scholar
  20. 20.
    Verissimo NC, Gailich BM, Oliveira HG, Caram R, Webster TJ (2015) Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. J Biomed Mater Res A 103A:3757–3763CrossRefGoogle Scholar
  21. 21.
    Guo L, Yuan W, Lu Z, Li CM (2013) Polymer/nanosilver composite coatings for antibacterial applications. Colloid Surf A 439:69–83CrossRefGoogle Scholar
  22. 22.
    Leckband D, Sheth S, Halperin A (1999) Grafted poly (ethylene oxide) brushes as nonfouling surface coatings. J Biomater Sci 10:1125–1147CrossRefGoogle Scholar
  23. 23.
    Wittschier N, Lengsfeld C, Vorthems S, Stratmann U, Ernst JF, Verspohl EJ, Hensel A (2007) Large molecules as anti-adhesive compounds against pathogens. J Pharm Pharmacol 59:777–786CrossRefGoogle Scholar
  24. 24.
    Wang J, Wang Z, Guo S, Zhang J, Song Y, Dong X, Wang, Jihong Yu X (2011) Antibacterial and anti-adhesive zeolite coatings on titanium alloy surface. Microporous Mesoporous Mater 146:216–222Google Scholar
  25. 25.
    Ungureanu C, Pirvu C, Mindroiu M, Demetrescu I (2012) Antibacterial polymeric coating based on polypyrrole and polyethylene glycol on a new alloy TiAlZr. Prog Org Coat 75:349–355CrossRefGoogle Scholar
  26. 26.
    Dumitriu C, Popescu M, Ungureanu C, Pirvu C (2015) Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes. Appl Surf Sci 341:157–165CrossRefGoogle Scholar
  27. 27.
    Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25:4135–4148CrossRefGoogle Scholar
  28. 28.
    Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG (2008) Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: A first step toward cell selective surfaces. J Biomed Mater Res 84A:425–435CrossRefGoogle Scholar
  29. 29.
    Chen J, Cao J, Wang J, Maitz FM, Guo L, Zhao Y, Li Q, Xiong K, Huang N (2012) Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization. J Colloid Interface Sci 368:636–647CrossRefGoogle Scholar
  30. 30.
    Zhang F, Zhang Z, Zhu X, Kang E-T, Neoh K-G (2008) Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 29:47515–47519Google Scholar
  31. 31.
    Kugel A, Stafslien S, Chisholm BJ (2011) Antimicrobial coatings produced by “tethering” biocides to the coating matrix: A comprehensive review. Prog Org Coat 72:222–252CrossRefGoogle Scholar
  32. 32.
    Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins ACL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterials surfaces. Acta Biomater 7:1431–1440CrossRefGoogle Scholar
  33. 33.
    Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575CrossRefGoogle Scholar
  34. 34.
    Hilpert K, Elliot M, Jenssen H, Kindrachuk J, Fjell CD, Körner J, Winkler DFH, Weaver LL, Henklein P, Ulrich AS, Chiang SHY, Farmer SW, Pante N, Volkmer R, Hancock REW (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69CrossRefGoogle Scholar
  35. 35.
    Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRefGoogle Scholar
  36. 36.
    Fjell CD, Jenssen H, Hilper K, Cheung WA, Panté N, Hancock REW, Cherkasov A (2009) Identification of novel antimicrobial peptides by chemoinformatics and machine learning. J Med Chem 52:2006–2015CrossRefGoogle Scholar
  37. 37.
    Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JTJ, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE, Chew BH, Hancock REW, Kizhakkedathu JN (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32:3899–3909CrossRefGoogle Scholar
  38. 38.
    Lin W, Junjian C, Chengzhi C, Lin S, Sa L, Li R, Yingjun W (2015) Multi-biofunctionalization of a titanium surface with a mixture of peptides to achieve excellent antimicrobial activity and biocompatibility. J Mater Chem B 3:30–33CrossRefGoogle Scholar
  39. 39.
    Corrales Ureňa YR, Wittig L, Vieira Nascimento M, Luiz Faccioni J, Filho PNL, Rischka K (2015) Influences of the pH on the adsorption properties of an antimicrobial peptide on titanium surfaces. Appl Adhes Sci 3:7CrossRefGoogle Scholar
  40. 40.
    Kazemzadeh-Narbat M, Kindrachuk Juan K, Jenssen H, Hancock REW, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 21:9519–9526CrossRefGoogle Scholar
  41. 41.
    Kazemzadeh-Narbat M, Lai BFL, Ding C, Kizhakkedathu JN, Jancock REW, Wang R (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34:5969–5977CrossRefGoogle Scholar
  42. 42.
    Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465CrossRefGoogle Scholar
  43. 43.
    Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201CrossRefGoogle Scholar
  44. 44.
    Goy RC, de Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19:241–247CrossRefGoogle Scholar
  45. 45.
    Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: A state of the art review. Int J Food Microbiol 144:51–63CrossRefGoogle Scholar
  46. 46.
    Muzzarelli RAA, Muzzarelli C (2005) Chitosan chemistry: relevance to the biomedical sciences. Adv Polym Sci 186:151–209CrossRefGoogle Scholar
  47. 47.
    Day AJ, Sheehan JK (2001) Hyaluronan: polysaccharide chaos to protein organisation. Curr Opin Chem Biol 11:617–622Google Scholar
  48. 48.
    Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R (2002) Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 23:4503–4513CrossRefGoogle Scholar
  49. 49.
    Gribbon P, Heng BC, Hardingham TE (2000) The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association. Biochem J 350:329–335Google Scholar
  50. 50.
    Carlson GA, Dragoo JL, Samimi B, Bruckner DA, Bernard GW, Hedrick M, Benhaim P (2004) Bacteriostatic properties of biomatrices against common orthopaedic pathogens. Biochem Biophys Res Commun 321:472–478CrossRefGoogle Scholar
  51. 51.
    Ardizzoni A, Neglia RG, Baschieri MC, Cermelli C, Caratozzolo M, Righi E, Palmieri B, Blasi E (2011) Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens. J Mater Sci Mater Med 22:2329–2338CrossRefGoogle Scholar
  52. 52.
    Harris LG, Richards RG (2004) Staphylococcus aureus adhesion to different treated titanium surfaces. J Mater Sci Mater Med 15:311–314CrossRefGoogle Scholar
  53. 53.
    Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2006) A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces. Biomacromolecules 7:1610–1622CrossRefGoogle Scholar
  54. 54.
    Chua PH, Neoh KG, Shi Z, Kang ET (2008) Structural stability and bioapplicability assessment of hyaluronic acid–chitosan polyelectrolyte multilayers on titanium substrates. J Biomed Mater Res 87A:1061–1074CrossRefGoogle Scholar
  55. 55.
    Cassinelli C, Morra M, Pavesio A, Renier D (2000) Evaluation of interfacial properties of hylarunonan coated poly(methylmethacrylate) intraocular lenses. J Biomater Sci Polym Ed 11:961–977CrossRefGoogle Scholar
  56. 56.
    Chua P-H, Neoh K-G, Kang E-T, Wang W (2007) Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29:1412–1421CrossRefGoogle Scholar
  57. 57.
    Chudobova D, Nejdl L, Gumulec J, Krystofova O, Rodrigo MAM, Kynicky J, Ruttkay-Nedecky B, Kopel P, Babula P, Adam V, Kizek R (2013) Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts. Int J Mol Sci 14:13592–13614CrossRefGoogle Scholar
  58. 58.
    Lv H, Chen Z, Yang X, Cen L, Zhang X, Gao P (2014) Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent 42:1464–1472CrossRefGoogle Scholar
  59. 59.
    Mishra SK, Ferreira JMF, Kannan S (2015) Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants. Carbohydr Polym 121:37–48CrossRefGoogle Scholar
  60. 60.
    Torabi S, Mahdavian AR, Sanei M, Abdollahi A (2016) Chitosan and functionalized acrylic nanoparticles as the precursor of new generation of bio-based antibacterial films. Mater Sci Eng C 59:1–9CrossRefGoogle Scholar
  61. 61.
    Cui X, Li CM, Bao H, Zheng X, Lu Z (2008) In situ fabrication of silver nanoarrays in hyaluronan/PDDA layer-by-layer assembled structure. J Colloid Interface Sci 327:459–465CrossRefGoogle Scholar
  62. 62.
    Abdel-Mohsen AM, Hrdina R, Burgert L, Krylova G, Abdel-Rahman RM, Krejcova A, Steinhart M, Benes L (2012) Green synthesis of hyaluronan fibers with silver nanoparticles. Carbohydr Polym 89:411–422CrossRefGoogle Scholar
  63. 63.
    Kemp MM, Kumar A, Clement D, Ajayan P, Mousa S, Linhardt RJ (2009) Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties. Nanomedicine 4:421–429CrossRefGoogle Scholar
  64. 64.
    Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. App Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  65. 65.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  66. 66.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRefGoogle Scholar
  67. 67.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRefGoogle Scholar
  68. 68.
    Park H-J, Kim Y, Kim J, Lee J-H, Hahn J-A, Guc MB, Yoona J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032CrossRefGoogle Scholar
  69. 69.
    Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B-I, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750CrossRefGoogle Scholar
  70. 70.
    Sondi I, Salopek-Sondi B (2003) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  71. 71.
    Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074CrossRefGoogle Scholar
  72. 72.
    Morones-Ramirez RJ, Winkler JA, Spina CS, Collins JJ (2013) Silver enhances antibiotic activity against Gram-negative bacteria. Sci Transl Med 5:190 (11p)CrossRefGoogle Scholar
  73. 73.
    Raimondi F, Scherer GG, Kötz R, Wokaun A (2005) Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew Chem Int Ed 44:2190–2209CrossRefGoogle Scholar
  74. 74.
    Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–325CrossRefGoogle Scholar
  75. 75.
    Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Gharayebi Y (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6:73 (10p)CrossRefGoogle Scholar
  76. 76.
    Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101Google Scholar
  77. 77.
    Guin D, Manorama SV, Latha JNL, Singh S (2007) Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for antibacterial outcome. J Phys Chem 111:13393–13397Google Scholar
  78. 78.
    Aguilar-Méndez MA, Martín-Martínez ES, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532CrossRefGoogle Scholar
  79. 79.
    Zeng J, Zheng Y, Rycenga M, Tao J, Li Z-Y, Zhang Q, Zhu Y, Xia Y (2010) Controlling the shapes of silver nanocrystals with different capping agents. J Am Chem Soc 132:8552–8553CrossRefGoogle Scholar
  80. 80.
    George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–3759CrossRefGoogle Scholar
  81. 81.
    Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96CrossRefGoogle Scholar
  82. 82.
    Li W-R, Xie X-B, Shi Q-S, Duan S-S, Ouyang Y-S, Chen Y-B (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141CrossRefGoogle Scholar
  83. 83.
    Li Y, Leung P, Yao L, Song QW, Newton E (2005) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63CrossRefGoogle Scholar
  84. 84.
    Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul Toxicol Pharmacol 68:1–7CrossRefGoogle Scholar
  85. 85.
    Wang Z, Xia T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale 7:7470–7481CrossRefGoogle Scholar
  86. 86.
    Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40:257–262CrossRefGoogle Scholar
  87. 87.
    Gosheger G, Herdes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, von Eiff C (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25:5547–5556CrossRefGoogle Scholar
  88. 88.
    Ewald A, Glückermann SK, Thull R, Gbureck U (2006) Antibacterial titanium/silver PVD coatings on titanium. Biomed Eng Online 5:22 (10p)CrossRefGoogle Scholar
  89. 89.
    Hauschild G, Hardes J, Gosheger G, Stoeppeler S, Ahrens H, Blaske F, Wehe C, Karst U, Höll S (2015) Evaluation of osseous integration of PVD-silver-coated hip prostheses in a canine model. Biomed Res Int 2015:292406 (10p)CrossRefGoogle Scholar
  90. 90.
    Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4:445–454CrossRefGoogle Scholar
  91. 91.
    Šupová M (2015) Substituted hydroxyapatites for biomedical applications: A review. Ceram Int 41:9203–9231CrossRefGoogle Scholar
  92. 92.
    Rameshbabu N, Sampath Kumar TSS, Prabhakar TG, Sastry VS, Murty KVGK, Rao KP (2007) Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization. J Biomed Mater Res A 80A:581–591CrossRefGoogle Scholar
  93. 93.
    Arumugam SK, Sastry TP, Sreedhar B, Mandal AB (2006) One step synthesis of silver nanorods by autoreduction of aqueous silver ions with hydroxyapatite: an inorganic–inorganic hybrid nanocomposite. J Biomed Mater Res A 80:391–398Google Scholar
  94. 94.
    Yan Y, Zhang X, Huang Y, Ding Q, Pang X (2014) Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Appl Surf Sci 314:348–357CrossRefGoogle Scholar
  95. 95.
    Pang X, Zhitomirsky I (2008) Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf Coat Technol 202:3815–3821CrossRefGoogle Scholar
  96. 96.
    Bai X, Sandukas S, Appleford M, Ong LJ, Rabiei A (2011) Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings. J Biomed Mater Res B Appl Biomater 100B:553–561CrossRefGoogle Scholar
  97. 97.
    Grubova YI, Surmeneva MA, Ivanova AA, Kravchuk K, Prymak O, Epple M, Buck V, Surmenev RA (2015) The effect of patterned titanium substrates on the properties of silver-doped hydroxyapatite coatings. Surf Coat Technol 276:595–601CrossRefGoogle Scholar
  98. 98.
    Song WH, Ryu HS, Hong SH (2008) Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation. J Biomed Mater Res A 88A:246–254CrossRefGoogle Scholar
  99. 99.
    Lu X, Zhang B, Wang Y, Zhou X, Weng J, Qu S, Feng B, Watari F, Ding Y, Leng Y (2011) Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. J R Soc Interface 8:529–539CrossRefGoogle Scholar
  100. 100.
    Mo A, Liao J, Xu W, Xian S, Li Y, Bai S (2008) Preparation and antibacterial effect of silver–hydroxyapatite/titania nanocomposite thin film on titanium. Appl Surf Sci 255:435–438CrossRefGoogle Scholar
  101. 101.
    Sygnatowicz M, Keyshar K, Tiwari A (2010) Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films. Biol Biomed Mater 62:65–70Google Scholar
  102. 102.
    Qu J, Lu X, Li D, Ding Y, Leng Y, Weng J, Qu S, Feng B, Watari F (2011) Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. J Biomed Mater Res Part B Appl Biomater 97B:40–48CrossRefGoogle Scholar
  103. 103.
    Feng QL, Cui FZ, Kim TN, Kim JW (1999) Ag-substituted hydroxyapatite coatings with both antimicrobial effects and biocompatibility. J Mater Sci Lett 18:559–561CrossRefGoogle Scholar
  104. 104.
    Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517CrossRefGoogle Scholar
  105. 105.
    Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C (2008) Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci Mater Med 19:3603–3609CrossRefGoogle Scholar
  106. 106.
    Trujillo NA, Oldinski RA, Ma H, Bryers JD, Williams JD, Popat KC (2012) Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mater Sci Eng 32:2135–2144CrossRefGoogle Scholar
  107. 107.
    Singh B, Kumar Dubey A, Kumar S, Saha N, Basu B, Gupta R (2011) In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10−xAgx(PO4)6(OH)2(0.0 ≤ x ≤ 0.5) hydroxyapatites. Mater Sci Eng 31C:1320–1329CrossRefGoogle Scholar
  108. 108.
    Chen W, Oh S, Ong AP, Oh N, Liu Y, Courtney HS, Appleford M, Ong JL (2007) Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res 82A:899–906CrossRefGoogle Scholar
  109. 109.
    Chung R-J, Hsieh M-F, Huang K-C, Perng L-H, Chou F-I, Chin T-S (2005) Anti-microbial hydroxyapatite particles synthesized by a sol–gel route. J Sol-Gel Sci Technol 33:229–239CrossRefGoogle Scholar
  110. 110.
    Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, Ramasamy K, Srinivasan N, Selvamurugan N (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172CrossRefGoogle Scholar
  111. 111.
    Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRefGoogle Scholar
  112. 112.
    Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874CrossRefGoogle Scholar
  113. 113.
    Visai L, Nardo LD, Punta C, Melone L, Cigada A, Imbriani M, Arciola CR (2011) Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs 34:929–946CrossRefGoogle Scholar
  114. 114.
    Bonetta S, Bonetta S, Motta F, Strini A, Carraro E (2013) Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express 3:1–8CrossRefGoogle Scholar
  115. 115.
    Nakano R, Hara M, Ishiguro H, Yao Y, Ochiai T, Nakata K, Murakami T, Kajioka J, Sunada K, Hashimoto K, Fujishima A, Kubota Y (2013) Broad spectrum microbicidal activity of photocatalysis by TiO2. Catalysts 3:310–323CrossRefGoogle Scholar
  116. 116.
    Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol Chem 156:227–233CrossRefGoogle Scholar
  117. 117.
    Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141:3–15CrossRefGoogle Scholar
  118. 118.
    Li H, Duan X, Liu G, Liu X (2008) Photochemical synthesis and characterization of Ag/TiO2 nanotube composites. J Mater Sci 43:1669–1676CrossRefGoogle Scholar
  119. 119.
    Zheng J, Yu H, Li X, Zhang S (2008) Enhanced photocatalytic activity of TiO2 nano-structured thin film with a silver hierarchical configuration. Appl Surf Sci 254:1630–1635CrossRefGoogle Scholar
  120. 120.
    Han C, Likodimos V, Khan JA, Nadagouda MN, Andersen J, Falaras P, Rosales-Lombardi P, Dionysiou DD (2014) UV–visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline. Environ Sci Pollut Res 21:11781–11793CrossRefGoogle Scholar
  121. 121.
    Foster HA, Sheel DW, Sheel P, Evans P, Varghese S, Rutschke N, Yates HM (2010) Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J Photochem Photobiol Chem 216:283–289CrossRefGoogle Scholar
  122. 122.
    Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A, Laub D (2004) Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. J Am Chem Soc 126:3868–3879CrossRefGoogle Scholar
  123. 123.
    Liu Y, Wang X, Yang F, Yang X (2008) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Microporous Mesoporous Mater 114:431–439CrossRefGoogle Scholar
  124. 124.
    Yu B, Leung KM, Guo Q, Lau WM, Yang J (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22:1–9Google Scholar
  125. 125.
    Amin SA, Pazouki M, Hosseinnia A (2009) Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli. Powder Technol 196:241–245CrossRefGoogle Scholar
  126. 126.
    Guo L, Feng W, Liu X et al (2015) Sol–gel synthesis of antibacterial hybrid coatings on titanium. Mater Lett 160:448–451CrossRefGoogle Scholar
  127. 127.
    Wang Q, Yu H, Zhong L, Liu J, Sun J, Shen J (2006) Incorporation of silver ions into ultrathin titanium phosphate films: in situ reduction to prepare silver nanoparticles and their antibacterial activity. Chem Mater 18:1988–1994CrossRefGoogle Scholar
  128. 128.
    Zhao B, Chen YW (2011) Ag/TiO2 sol prepared by a sol–gel method and its photocatalytic activity. J Phys Chem Solids 72:1312–1318CrossRefGoogle Scholar
  129. 129.
    Fu T, Shen Y, Alajmi Z, Wang Y, Yang S, Li G (2014) Sol–gel derived Ag-containing TiO2 films on surface roughened biomedical NiTi alloy. Ceram Int 40:12423–12429CrossRefGoogle Scholar
  130. 130.
    Lan MY, Liu CP, Huang HH, Lee SW (2013) Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS ONE 8, e75364 (8p)CrossRefGoogle Scholar
  131. 131.
    Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chuet PK (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32:5706–5716CrossRefGoogle Scholar
  132. 132.
    Kamaraj K, George RP, Anandkumar B, Parvathavarthini N, Kamachi U, Mudali K (2015) A silver nanoparticle loaded TiO2 nanoporous layer for visible light induced antimicrobial applications. Bioelectrochemistry 106(pt B):290–297CrossRefGoogle Scholar
  133. 133.
    Brook LA, Evans P, Foster HA, Pemble ME, Steele A, Sheel DW, Yates HM (2007) Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J Photochem Photobiol Chem 187:53–63CrossRefGoogle Scholar
  134. 134.
    Santillán MJ, Quaranta NE, Boccaccini AR (2010) Titania and titania–silver nanocomposite coatings grown by electrophoretic deposition from aqueous suspensions. Surf Coat Technol 205:2562–2571CrossRefGoogle Scholar
  135. 135.
    Li B, Liu X, Meng F, Chang J, Ding C (2009) Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings. Mater Chem Phys 118:99–104CrossRefGoogle Scholar
  136. 136.
    Gao J, Zhao C, Zhou J, Li C, Shao Y, Shi C, Zhu Y (2015) Plasma sprayed rutile titania-nanosilver antibacterial coatings. Appl Surf Sci 355:593–601CrossRefGoogle Scholar
  137. 137.
    Zhang P, Zhang Z, Li W (2013) Antibacterial TiO2 coating incorporating silver nanoparticles by microarc oxidation and ion implantation. J Nanomater 2013:1–8Google Scholar
  138. 138.
    Xu R, Yang X, Jiang J, Li P, Zhang X, Wu G, Chu PK (2015) Effects of silver plasma immersion ion implantation on the surface characteristics and cytocompatibility of titanium nitride films. Surf Coat Technol 279:166–170CrossRefGoogle Scholar
  139. 139.
    Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein J Nanotechnol 4:345–351CrossRefGoogle Scholar
  140. 140.
    Elizabeth E, Baranwal G, Krishnan AG, Menon D, Nair M (2014) ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology 25:115101 (12p)CrossRefGoogle Scholar
  141. 141.
    Liu W, Su P, Chen S, Wang N, Ma Y, Liu Y, Wang J, Zhang Z, Li H, Webster TJ (2014) Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale 6:9050–9062CrossRefGoogle Scholar
  142. 142.
    Huo K, Zhang X, Wang H, Zhao L, Liu X, Chu PK (2013) Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 34:3467–3478CrossRefGoogle Scholar
  143. 143.
    Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM (2011) Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 86:235–241CrossRefGoogle Scholar
  144. 144.
    Khan MM, Ansari SA, Lee J, Cho MH (2013) Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Mater Sci Eng C 33:4692–4699CrossRefGoogle Scholar
  145. 145.
    Colon G, Ward BC, Webster TJ (2006) Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A 78:595–604CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Valdoltra Orthopedic HospitalAnkaranSlovenia

Personalised recommendations