Natural Composite Membranes for Water Remediation: Toward a Sustainable Tomorrow

  • Noor Hana Hanif Abu BakarEmail author
  • Wei Leng Tan


Natural composites as green membranes have shown great potential in water remediation. These membranes combine merits from both natural polymer and inorganic or organic additives. Natural polymers are biodegradable, non-toxic and offer flexibility for design purposes. Incorporation of additives can enhance the mechanical and thermal properties or impart antibacterial and catalytic properties to the composite. This chapter provides an overview of the different types of natural polymer composite membranes and their functions. It also highlights the recent development of cellulose, chitosan, and natural rubber composite-based membranes in water treatment technologies between 2010 and 2015.


Natural polymer Membrane Composite Additive Water treatment 


  1. 1.
    WHO (2015) Progress on Drinking Water and SanitationGoogle Scholar
  2. 2.
    Mezher T, Fath H, Abbas Z, Khaled A (2011) Techno-economic assessment and environmental impacts of desalination technologies. Desalination 266:263–273Google Scholar
  3. 3.
    Kabsch-Korbutowicz M, Urbanowska A (2010) Comparison of polymeric and ceramic ultrafiltration membranes for separation of natural organic matter from water. Environ Protect Eng 3:125–135Google Scholar
  4. 4.
    Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H (2014) TiO2 based photocatalytic membranes: a review. J Membr Sci 472:167–184Google Scholar
  5. 5.
    Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349Google Scholar
  6. 6.
    Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254Google Scholar
  7. 7.
    Ismail AF, Padaki M, Hilal N, Matsuura T, Lau WJ (2015) Thin film composite membrane—recent development and future potential. Desalination 356:140–148Google Scholar
  8. 8.
    Fane AG, Wang R, Hu MX (2015) Synthetic membranes for water purification: status and future. Angew Chem Int Ed Engl 54:3368–3386Google Scholar
  9. 9.
    Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275Google Scholar
  10. 10.
    Lau WJ, Gray S, Matsuura T, Emadzadeh D, Chen JP, Ismail AF (2015) A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res 80:306–324Google Scholar
  11. 11.
    Carpenter AW, de Lannoy C-F, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287Google Scholar
  12. 12.
    John MJ, Thomas S (2012) Natural polymers, vol 1: Composites. RSC Green Chemistry Series. RSC Publishing, Croydon, UKGoogle Scholar
  13. 13.
    Tang H, Chang C, Zhang L (2011) Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway. Chem Eng J 173:689–697Google Scholar
  14. 14.
    Prakash N, Sudha PN, Renganathan NG (2012) Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6. Env Sci Pollut Res 19:2930–2941Google Scholar
  15. 15.
    EL-Gendi A, Deratani A, Ahmed SA, Ali SS (2014) Development of polyamide-6/chitosan membranes for desalination. Egyptian J Petroleum 23:169–173Google Scholar
  16. 16.
    Johns J, Rao V (2011) Adsorption of methylene blue onto natural rubber/chitosan blends. Int J Polym Mater Polym Biomater 60:766–775Google Scholar
  17. 17.
    Boricha AG, Murthy ZVP (2010) Preparation of N,O-carboxymethyl chitosan/cellulose acetate blend nanofiltration membrane and testing its performance in treating industrial wastewater. Chem Eng J 157:393–400Google Scholar
  18. 18.
    Sadeghi S, Rad FA, Moghaddam AZ (2014) A highly selective sorbent for removal of Cr(VI) from aqueous solutions based on Fe3O4/poly(methyl methacrylate) grafted Tragacanth gum nanocomposite: optimization by experimental design. Mater Sci Eng C 45:136–145Google Scholar
  19. 19.
    Mansourpanah Y, Afarani HS, Alizadeh K, Tabatabaei M (2013) Enhancing the performance and antifouling properties of nanoporous PES membranes using microwave-assisted grafting of chitosan. Desalination 322:60–68Google Scholar
  20. 20.
    Qin A, Li X, Zhao X, Liu D, He C (2015) Preparation and characterization of nano-chitin whisker reinforced PVDF membrane with excellent antifouling property. J Membr Sci 480:1–10Google Scholar
  21. 21.
    Karim Z, Mathew AP, Grahin M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydrate Polym 112:668–676Google Scholar
  22. 22.
    Janaa S, Saikiab A, Purkaita MK, Mohantya K (2011) Chitosan based ceramic ultrafiltration membrane: preparation, characterization and application to remove Hg(II) and As(III) using polymer enhanced ultrafiltration. Chem Eng J 170:209–219Google Scholar
  23. 23.
    Nawi MA, Sabar S, Jawad AH, Sheilatina, W.S. Wan Ngah (2010) Adsorption of reactive red 4 by immobilized chitosan on glass plates: towards the design of immobilized TiO2–chitosan synergistic photocatalyst-adsorption bilayer system. Biochem Eng J 49:317–325Google Scholar
  24. 24.
    Liu Y, Wu Z, Chen X, Shao Z, Wang H, Zhao D (2012) A hierarchical adsorption material by incorporating mesoporous carbon into macroporous chitosan membranes. J Mater Chem 22:11908–11911Google Scholar
  25. 25.
    Seyed Dorraji MS, Mirmohseni A, Carraro M, Gross S, Simon S, Tasselli F, Figoli A (2015) Fenton-like catalytic activity of wet-spun chitosan hollow fibers loaded with Fe3O4 nanoparticles: batch and continuous flow investigations. J Mol Catal A 398:353–357Google Scholar
  26. 26.
    Wang R-M, Wang H, Wang Y, Li H-R, He Y-F, Hao E-X (2014) Preparation and photocatalytic activity of chitosan-supported cobalt phthalocyanine membrane. Coloration Technol 130:32–36Google Scholar
  27. 27.
    Nesic AR, Velickovic SJ, Antonovic DG (2015) Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv orange V-3R dye. J Hazardous Mater 209–210:256–263Google Scholar
  28. 28.
    Xu R, Tang R, Zhou Q, Li F, Zhang B (2015) Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes. Chem Eng J 262:88–95Google Scholar
  29. 29.
    Xu R, Zhou Q, Li F, Zhang B (2013) Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chem Eng J 222:321–329Google Scholar
  30. 30.
    Salehi E, Madaeni SS, Rajabi L, Derakhshan AA, Daraei S, Vatanpour V (2013) Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes: combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes. Chem Eng J 215–216:791–801Google Scholar
  31. 31.
    Das D, Varghese LR, Das N (2015) Enhanced TDS removal using cyclodextrinated, sulfonated and aminated forms of bead–membrane duo nanobiocomposite via sophorolipid mediated complexation. Desalination 360:35–44Google Scholar
  32. 32.
    Liu CX, Zhang DR, He Y, Zhao XS, Bai R (2010) Modification of membrane surface for anti-biofouling performance: effect of anti-adhesion and anti-bacteria approaches. J Membr Sci 346:121–130Google Scholar
  33. 33.
    Lin S, Chen L, Huang L, Cao S, Luo X, Liu K (2015) Novel antimicrobial chitosan–cellulose composite films bioconjugated with silver nanoparticles. Ind Crops Prod 70:395–403Google Scholar
  34. 34.
    Zhang L, Bai R (2011) Novel multifunctional membrane technology for visual detection and enhanced adsorptive removal of lead ions in water and wastewater. Water Sci Technol 11:113–120Google Scholar
  35. 35.
    Zhang L, Zhao Y-H, Bai R (2011) Development of a multifunctional membrane for chromatic warning and enhanced adsorptive removal of heavy metal ions: application to cadmium. J Membr Sci 379:69–79Google Scholar
  36. 36.
    Panda SR, Mukherjee M, De S (2015) Preparation, characterization and humic acid removal capacity of chitosan coated iron-oxide- polyacrylonitrile mixed matrix membrane. J Water Process Eng 6:93–104Google Scholar
  37. 37.
    Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H, Beygzadeh M (2014) Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 349:145–154Google Scholar
  38. 38.
    Hegab HM, Wimalasiri Y, Ginic-Markovic M, Zou L (2015) Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan. Desalination 365:99–107Google Scholar
  39. 39.
    Booshehri AY, Wang R, Xu R (2015) Simple method of deposition of CuO nanoparticles on a cellulose paper and its antibacterial activity. Chem Eng J 262:999–1008Google Scholar
  40. 40.
    Bai H, Liu Z, Sun DD (2010) Hierarchically multifunctional TiO2 nano-thorn membrane for water purification. Chem Commun 46:6542–6544Google Scholar
  41. 41.
    Bendi R, Imae T, Destaye AG (2015) Ag nanoparticle-immobilized cellulose nanofibril films for environmental conservation. Appl Catal A 492:184–189Google Scholar
  42. 42.
    Bendi R, Imae T (2013) Renewable catalyst with Cu nanoparticles embedded into cellulose nano-fiber film. RSC Adv 3:16279–16282Google Scholar
  43. 43.
    Zeng J, Liu S, Zhang L (2010) TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J Phys Chem C 114:7806–7811Google Scholar
  44. 44.
    Meng J, Zhang X, Ni L, Tang Z, Zhang Y, Zhang Y, Zhang W (2015) Antibacterial cellulose membrane via one-step covalent immobilization of ammonium/amine groups. Desalination 359:156–166Google Scholar
  45. 45.
    Wu Y, Liu X, Meng M, Lv P, Yan M, Wei X, Li H, Yan Y, Li C (2015) Bio-inspired adhesion: fabrication of molecularly imprinted nanocomposite membranes by developing a hybrid organic–inorganic nanoparticles composite structure. J Membr Sci 490:169–178Google Scholar
  46. 46.
    Gholami A, Moghadassi AR, Hosseini SM, Shabani S, Gholami F (2014) Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. J Ind Eng Chem 20:1517–1522Google Scholar
  47. 47.
    Ghaemi N, Madaeni SS, Alizadeh A, Daraei P, Vatanpour V, Falsafi M, (2012) Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane: characterization and performance in rejection of pesticides. Desalination 290:99–106Google Scholar
  48. 48.
    Azari S, Zou L, Cornelissen E, Mukai Y (2013) Facile fouling resistant surface modification of microfiltration cellulose acetate membranes by using amino acid l-DOPA. Water Sci Technol 68:901–908Google Scholar
  49. 49.
    Worthley CH, Constantopoulos KT, Ginic-Markovic M, Markovic E, Clarke S (2013) A study into the effect of POSS nanoparticles on cellulose acetate membranes. J Membr Sci 431:62–71Google Scholar
  50. 50.
    Zawierucha I, Kozlowski C, Malina G (2013) Removal of toxic metal ions from landfill leachate by complementary sorption and transport across polymer inclusion membranes. Waste Manag 33:2129–2136Google Scholar
  51. 51.
    Velu S, Rambabu K, Muruganandam I (2013) Preparation, characterization and application of cellulose acetate-iron nanoparticles blend ultrafiltration membranes. J Chem Pharm Res 5:1418–1428Google Scholar
  52. 52.
    Bergamasco R, da Silva FV, Arakawa FS, Yamaguchi NU, Reis MHM, Tavares CJ, de Amorim MTPS, Tavares CRG (2011) Drinking water treatment in a gravimetric flow system with TiO2 coated membranes. Chem Eng J 174:102–109Google Scholar
  53. 53.
    El Badawi N, Ramadan AR, Esawi AMK, El-Morsi M (2014) Novel carbon nanotube–cellulose acetate nanocomposite membranes for water filtration applications. Desalination 344:79–85Google Scholar
  54. 54.
    Ugur A, Sener I, Hol A, Alpoguz HK, Elci L (2014) Facilitated transport of Zn(II) and Cd(II) ions through polymer inclusion membranes immobilized with a calix[4]resorcinarene derivative. J Macromol Sci Part A 51:611–618Google Scholar
  55. 55.
    Sile-Yuksel M, Tas B, Koseoglu-Imer DY, Koyuncu I (2014) effect of silver nanoparticle (AgNP) location in nanocomposite membrane matrix fabricated with different polymer type on antibacterial mechanism. Desalination 347:120–130Google Scholar
  56. 56.
    Chan MK, Idris A (2014) Modification of cellulose acetate membrane using monosodium glutamate additives prepared by microwave heating. J. Ind. Eng. Chem. 18:2115–2123Google Scholar
  57. 57.
    Khan SB, Alamry KA, Bifari EN, Asiri AM, Yasir M, Gzara L, Ahmad RZ (2015) Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection. J Ind Eng Chem 24:266–275Google Scholar
  58. 58.
    Pagidi A, Thuyavan YL, Arthanareeswaran G, Ismail AF, Jaafar J, Paul D (2015) Polymeric membrane modification using SPEEK and bentonite for ultrafiltration of dairy wastewater. J Appl Polym Sci 132. doi: 10.1002/app.41651
  59. 59.
    Thaci B, Gashi S, Daci N, Daci M, Dylhasi A (2015) Effect of modified coal through chemical activation process on performance of heterogenous reverse osmosis membranes. Environ Protect Eng. 41:53–65Google Scholar
  60. 60.
    He Z, Meng M, Yen L, Zhu W, Sun F, Yen Y, Liu Y, Liu S (2015) Fabrication of new cellulose acetate blend imprinted membrane assisted with ionic liquid ([BMIM]Cl) for selective adsorption of salicylic acid from industrial wastewater. Sep Purif Technol 145:63–74Google Scholar
  61. 61.
    El-Din LAN, El-Gendi A, Ismail N, Abed KA, Ahmed AI (2015) Evaluation of cellulose acetate membrane with carbon nanotubes additives. J Ind Eng Chem 26:259–264Google Scholar
  62. 62.
    Dehkordi FS, Pakizeh M, Namvar-Mahboub M (2015) Properties and ultrafiltration efficiency of cellulose acetate/organically modified Mt (CA/OMMt) nanocomposite membrane for humic acid removal. Appl Clay Sci 105–106:178–185Google Scholar
  63. 63.
    Bai H, Liu Z, Sun DD (2012) A hierarchically structured and multifunctional membrane for water treatment. Appl Catal B 111–112:571–577Google Scholar
  64. 64.
    Ye S, Zhang D, Liu H J. Zhou (2011) ZnO nanocrystallites/cellulose hybrid nanofibers fabricated by electrospinning and solvothermal techniques and their photocatalytic activity. J Appl Polym Sci 121:1757–1764Google Scholar
  65. 65.
    Snyder A, Bo Z, Moon R, Rochet J-C, Stanciu L (2013) Reusable photocatalytic titanium dioxide–cellulose nanofiber films. J Colloids Interface Sci 399:92–98Google Scholar
  66. 66.
    Zhang J, Liu W, Wang P, Qian K (2013) Photocatalytic behavior of cellulose-based paper with TiO2 loaded on carbon fibers. J Environ Chem Eng 1:175–182Google Scholar
  67. 67.
    Bai H, Zan X, Juay J, Sun DD (2015) Hierarchical heteroarchitectures functionalized membrane for high efficient water purification. J Membr Sci 475:245–251Google Scholar
  68. 68.
    Li C, Liu Q, Shu S, Xie Y, Zhao Y, Chen B (2014) Preparation and characterization of regenerated cellulose/TiO2/ZnO nanocomposites and its photocatalytic activity. Mater Lett 117:234–236Google Scholar
  69. 69.
    Taha AA, Wu Y-N, Wang H, Li F (2012) Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. J Environ Manag 112:10–16Google Scholar
  70. 70.
    Gul S, Waheed S, Ahmad A, Khan SM, Hussain M, Jamil T, Zuber M (2015) Synthesis, characterization and permeation performance of cellulose acetate/polyethylene glycol-600 membranes loaded with silver particles for ultralow pressure reverse osmosis. J Taiwan Institute Chem Eng doi: 10.1016/j.jtice.2015.05.024
  71. 71.
    Perera DHN, Nataraj SK, Thomson NM, Sepe A, Huttner S, Steiner U, Qiblawey H, Sivaniah E (2014) Room-temperature development of thin film composite reverse osmosis membranes from cellulose acetate with antibacterial properties. J Membr Sci 453:212–220Google Scholar
  72. 72.
    Li R, Liu L, Wang F (2014) Removal of aqueous Hg(II) and Cr(VI) using phytic acid doped polyaniline/cellulose acetate composite membrane. J Hazardous Mater 280:20–30Google Scholar
  73. 73.
    Ahmad A, Waheed S, Khan SM, E-Gul S, Shafiq M, Farooq M, Sanaullah K, Jamil T (2015) Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis. Desalination 355:1–10Google Scholar
  74. 74.
    Kiran SA, Arthanareeswaran G, Thuyavan YL, Ismail AF (2015) Influence of bentonite in polymer membranes for effective treatment of car wash effluent to protect the ecosystem. Ecotoxicol Environ Safety 121:186–192Google Scholar
  75. 75.
    Zirehpour A, Rahimpour A, Seyedpour F, Jahanshahi M (2015) Developing new CTA/CA-based membrane containing hydrophilic nanoparticles to enhance the forward osmosis desalination. Desalination 371:46–57Google Scholar
  76. 76.
    Akin I, Ersoz M (2014) Preparation and characterization of CTA/m-ZnO composite membrane for transport of Rhodamine B. Desalination Water Treat. doi: 10.1080/19443994.2014.980327
  77. 77.
    Salma A, Ounissa K-S, Fadila H, Mohamed B (2014) Equilibrium and kinetic modeling of acid dye removal from aqueous solution by polymer inclusion membrane (PIMs). Desalination Water Treat. doi: 10.1080/19443994.2014.984634
  78. 78.
    Baczynska M, Regel-Rosocka M, Nowicki M, Wisniewski M (2015) Effect of the structure of polymer inclusion membranes on Zn(II) transport from chloride aqueous solutions. J Appl Polym Sci. doi: 10.1002/APP.42319
  79. 79.
    Rodriguez RV, Montero-Caberera ME, Esparza-Ponce HE, Herrera-Peraza EF, Ballinas-Casarrubias MI (2012) Uranium removal from water using cellulose triacetate membranes added with activated carbon. Appl Rad Isotopes 70:872–881Google Scholar
  80. 80.
    Oberta A, Wasilewski J, Wodzki R (2011) Structure and transport properties of polymer inclusion membranes for Pb(II) separation. Desalination 271:132–138Google Scholar
  81. 81.
    Perez-Silva I, Galan-Vidal CA, Ramirez-Silva MT, Rodriguez JA, Alvarez-romero GA, Paez-Hernandez ME (2013) Phenol removal process development from synthetic wastewater solutions using a polymer inclusion membrane. Ind Eng Chem Res 52:4919–4923Google Scholar
  82. 82.
    Terrazas-Bandala LP, Gonzalez-Sanchez G, Garcia-Valls R, Gumi T, Beurroies I, Denoyel R, Torras C, Ballinas-Casarrubias L (2014) Influence of humidity, temperature, and the addition of activated carbon on the preparation of cellulose acetate membranes and their ability to remove arsenic from water. J Appl Polym Sci 131. doi: 10.1002/app.40134
  83. 83.
    Villalobos-RodRiguez R, Cuilty KR, Montero-Cabrera ME, Esparza-Ponce HE, Nevarez-Moorillon GV, Fierro V, Celzard A, Ballinas-Casarrubias ML (2014) Iron influence on uranium removal from water using cellulose acetate membranes doped with activated carbon. Desalination Water Treat. doi: 10.1080/19443994.2014.980333
  84. 84.
    Liu T, An Q-F, Wang X-S, Zhao Q, Zhu B-K, Gao C-J (2014) Iron influence on uranium removal from water using cellulose acetate membranes doped with activated carbon. Carbohydrate Polym 106:403–409Google Scholar
  85. 85.
    Chen, JH, Ni JC, Liu QL, Li SX (2012) Adsorption behavior of Cd(II) ions on humic acid-immobilized sodium alginate and hydroxyl ethyl cellulose blending porous composite membrane adsorbent. Desalination 285: pp. 54–61Google Scholar
  86. 86.
    Shenvi SS, Isloor AM, Ismail AF, Shilton SJ, Ahmed AA (2015) Humic acid based biopolymeric membrane for effective removal of methylene blue and rhodamine B. Ind Eng Chem Res 54:4965–4975Google Scholar
  87. 87.
    Ahmed F, Santos CM, Mangadlao J, Advincula R, Rodrigues DF (2013) Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing. Water Res 47:3966–3975Google Scholar
  88. 88.
    Venkatanarasimhan S, Raghavachari D (2013) Epoxidized natural rubber–magnetite nanocomposites for oil spill recovery. J Mater Chem A 1:868–876Google Scholar
  89. 89.
    Nawi MA, Ngoh YS, Zain SM (2012) Photoetching of Immobilized -PVC Composite for Improved Photocatalytic Activity. Int J Photoenergy. doi: 10.1155/2012/859294
  90. 90.
    Alamaria AHM, Nawawi MGM, Zamrud Z (2015) Sago/PVA blend membranes for the recovery of ethyl acetate from water. Arabian J Chem. doi: 10.1016/j.arabjc.2014.12.019
  91. 91.
    Chen W, Su Y, Zheng L, Wang L, Jiang Z. (2009) The improved oil/water separation performance of cellulose acetate-graft-polyacrylonitrile membranes. J. Membr Sci 337:98–105Google Scholar
  92. 92.
    Puspasari T, Pradeep N, Pipeinemann K-V (2015) Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection. J Membr Sci 491:132–137Google Scholar
  93. 93.
    Nandi BK, Uppaluri R, Purkait MK (2009) Effects of dip coating parameters on the morphology and transport properties of cellulose acetate–ceramic composite membranes. J Membr Sci 330:246–258Google Scholar
  94. 94.
    Abedini R, Mousavi SM, Aminzadeh R (2011) A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: preparation, characterization and permeation study. Desalination 277:40–45Google Scholar
  95. 95.
    O’Rourke M, Cattrall RW, Kolev SD, Potter ID (2009) The extraction and transport of organic molecules using polymer inclusion membranes. Solvent Extr Res Dev Jpn 16:1–12Google Scholar
  96. 96.
    Zhao KY, Gao N, Liu C, Cheng GX (2008) Molecularly-imprinted calcium phosphate/calcium alginate composite microspheres by surface imprinting via silane crosslinking. Adsorpt Sci Technol 26:631–641Google Scholar
  97. 97.
    Zhao K, Feng L, Lin H, Fu Y, Lin B, Cui W, Li S, Wei J (2014) Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix. Catal Today 236:127–134Google Scholar
  98. 98.
    Akhondi E, Wu B, Sun S, Marxer B, Lim W, Gu J, Liu L, Burkhardt M, McDougald D, Pronk W, Fane AG (2015) Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: Linking biofouling layer morphology with flux stabilization. Water Res 70:158–173Google Scholar
  99. 99.
    Wang R, Guan S, Sato A, Wang X, Wang Z, Yang R, Hsiao BS, Chu B (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci 446:376–382Google Scholar
  100. 100.
    Wu C, Wang H, Wei Z, Li C, Luo Z (2015) Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: preparation, characterization and their adsorption properties towards heavy metal ions. Appl Surf Sci 346:207–215Google Scholar
  101. 101.
    Bet-Moushoul E, Mansourpanah Y, Farhadi K, Tabatabaei M (2016) TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem Eng J 283:29–46Google Scholar
  102. 102.
    Deinema MH, Zevenhuizan LP (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Microbiol 78:42–51Google Scholar
  103. 103.
  104. 104.
    Toledo L, Rivas BL (2015) Quaternised chitosan in conjunction with ultrafiltration membranes to remove arsenate and chromate ions. Polymer Bull 72:1365–1377Google Scholar
  105. 105.
    Tang C, Zhang Q, Wang K, Fu Q, Zhang C (2009) Water transport behavior of chitosan porous membranes containing multi-walled carbon nanotubes (MWNTs). J Membr Sci 337:240–247Google Scholar
  106. 106.
    Chen XH, Xiong Y-N, Wang J, Deng W-N, Tang Q-L (2015) Preparation of chitosan/multi-walled carbon nanotubes membrane and its performance of methyl orange adsorption and Cu2+ rejection. J Hunan Univ Nat Sci 42:34–40Google Scholar
  107. 107.
    Blackley DC (1966) High polymer lattices, vol 1. Macleren & Sons Ltd, London, p 214Google Scholar
  108. 108.
    Abu Bakar NHH, Ismail J, Abu Bakar M (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104:276–283Google Scholar
  109. 109.
    Jin M, Zhang X, Emeline AV, Numata T, Murakami T, Fujishima A (2008) Surface modification of natural rubber by TiO2 film. Surf Coating Technol 202:1364–1370Google Scholar
  110. 110.
    Sriwong C, Wongnawa S, Patarapaiboolsci O (2008) Photocatalytic activity of rubber sheet impregnated with TiO2 particles and its recyclability. Catal Commun 9:213–218Google Scholar
  111. 111.
    Abu Bakar NHH, Hasanuddin NH, Tan WL, Abu Bakar M (2015) Removal of methylene blue using bi-functional NR-Ag composite membranes (manuscript in preparation)Google Scholar
  112. 112.
    Abu Bakar NHH, Muda NH, Tan WL, Abu Bakar M (2015) The effectiveness of NR-Ag composite membrane in the catalytic degradation of methyl orange dye (manuscript in preparation)Google Scholar
  113. 113.
    Sareena C, Ramesan MT, Purushothaman E (2013) Transport studies of peanut shell powder reinforced natural rubber composites in chlorinated solvents. Fibers Polym 14:1674–1687Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Chemical SciencesUniversiti Sains MalaysiaGeorge TownMalaysia

Personalised recommendations