Advertisement

Accuracy Assessment of CBCT-Based Volumetric Brain Shift Field

  • Iris Smit-Ockeloen
  • Daniel Ruijters
  • Marcel Breeuwer
  • Drazenko Babic
  • Olivier Brina
  • Vitor Mendes Pereira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9401)

Abstract

The displacement of the brain parenchyma during open brain surgery, known as ‘brain shift’, affects the applicability of pre-operative planning and affects the outcome of the surgery. In this article we investigated the accuracy of a novel method to intra-operatively determine the brain shift displacement field throughout the whole brain volume. The brain shift displacement was determined by acquiring contrast enhanced cone-beam CT before and during the surgery. The respective datasets were pre-processed, landmark enhanced, and elastically registered to find the displacement field. The accuracy of this method was evaluated by artificially creating post-operative data with a known ground truth deformation. The artificial post-operative data was obtained by applying the deformation field from one patient on the pre-operative data of another patient, which was repeated for three patients. The mean error that was found with this method ranged from 1 to 2 mm, while the standard deviation was about 1 mm.

Keywords

Brain shift Open brain surgery Craniotomy Cone-beam CT Elastic registration 

References

  1. 1.
    Hartkens, T., Hill, D.L.G., Castellano-Smith, A.D., Hawkes, D.J., Maurer Jr., C.R., Martin, A.J., Hall, W.A., Liu, H., Truwit, C.L.: Measurement and analysis of brain deformation during neurosurgery. IEEE Trans. Med. Imaging 22(1), 82–92 (2003)CrossRefGoogle Scholar
  2. 2.
    Archip, N., Clatz, O., Whalen, S., Kacher, D., Fedorov, A., Kot, A., Chrisochoides, N., Jolesz, F., Golby, A., Black, P.M., Warfield, S.K.: Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in imageguided neurosurgery. NeuroImage 35, 609–624 (2007)CrossRefGoogle Scholar
  3. 3.
    Nabavi, A., Black, P., Gering, D., et al.: Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4), 787–798 (2001)Google Scholar
  4. 4.
    Hastreiter, P., Rezk-Salama, C., Soza, G., Bauer, M., Greiner, G., Fahlbusch, R., Ganslandt, O., Nimsky, C.: Strategies for brain shift evaluation. Med. Image Anal. 4, 447–464 (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Mostayed, A., Garlapati, R.R., Joldes, G.R., Wittek, A., Roy, A., Kikinis, R., Warfield, S.K., Miller, K.: Biomechanical model as a registration tool for image-guided neurosurgery: evaluation against BSpline registration. Ann. Biomed. Eng. 41(11), 2409–2425 (2013)CrossRefGoogle Scholar
  6. 6.
    Nimsky, C., Ganslandt, O., von Keller, B., Romstock, J., Fahlbusch, R.: Intraoperative High-Field-Strength MR imaging: implementation and experience in 200 patients 1. Radiology 233(1), 67–78 (2004)CrossRefGoogle Scholar
  7. 7.
    Jolesz, F.A.: Future perspectives for intraoperative MRI. Neurosurg. Clin. N. Am. 16(1), 201–213 (2005)CrossRefGoogle Scholar
  8. 8.
    Comeau, R., Sadikot, A., Fenster, A., Peters, T.: Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med. Phys. 27(4), 787–800 (2000)CrossRefGoogle Scholar
  9. 9.
    Letteboer, M., Willems, P., Viergever, M., Niessen, W.: Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans. Biomed. Eng. 52(2), 268–276 (2005)CrossRefGoogle Scholar
  10. 10.
    Reinertsen, I., Descoteaux, M., Siddiqi, K., Collins, D.: Validation of vessel-based registration for correction of brain shift. Med. Image Anal. 11(4), 374–388 (2007)CrossRefGoogle Scholar
  11. 11.
    Bucki, M., Palombi, O., Bailet, M., Payan, Y.: Doppler ultrasound driven biomechanical model of the brain for intraoperative brain-shift compensation: a proof of concept in clinical conditions. Stud. Mechanobiol. Tissue Eng. Biomater. 11, 135–165 (2012)CrossRefGoogle Scholar
  12. 12.
    Wein, W., Ladikos, A., Fuerst, B., Shah, A., Sharma, K., Navab, N.: Global registration of ultrasound to MRI using the LC2 metric for enabling neurosurgical guidance. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 34–41. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Rivaz, H., Jy-Shyang Chen, S., Collins, D.L.: Automatic deformable MR-ultrasound registration for image-guided neurosurgery. IEEE Trans. Med. Imaging 34(2), 366–380 (2015)CrossRefGoogle Scholar
  14. 14.
    Robben, D., Smeets, D., Ruijters, D., Hoffmann, M., Antanas, L., Maes, F., Suetens, P.: Intra-patient non-rigid registration of 3D vascular cerebral images. In: Drechsler, K., Erdt, M., Linguraru, M.G., Oyarzun Laura, C., Sharma, K., Shekhar, R., Wesarg, S. (eds.) CLIP 2012. LNCS, vol. 7761, pp. 106–113. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    Mendes Pereira, V., Smit-Ockeloen, I., Brina, O., Babic, D., Breeuwer, M., Schaller, K., Lovblad, K.-O., Ruijters, D.: Volumetric Measurements of Brain Shift Using Intra-Operative Cone-Beam CT: Preliminary Study. Operative Neurosurgery (in press 2015)Google Scholar
  16. 16.
    Smith, S.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)CrossRefGoogle Scholar
  17. 17.
    Powell, M.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    van der Bom, I., Hou, S., Puri, A., Spilberg, G., Ruijters, D., van de Haar, P., Carelsen, B., Vedantham, S., Gounis, M., Wakhloo, A.: Reduction of coil mass artifacts in high-resolution at detector conebeam CT of cerebral stent-assisted coiling. AJNR Am. J. Neuroradiol. 34(11), 2163–2170 (2013)CrossRefGoogle Scholar
  19. 19.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Colchester, A., Wells, W., Delp, S. (eds.) Medical Image Computing and Computer-Assisted Interventation, pp. 130–137. Springer, Berlin (1998)CrossRefGoogle Scholar
  20. 20.
    Ruijters, D., ter Haar Romeny, B.M., Suetens, P.: GPU-accelerated elastic 3D image registration for intra-surgical applications. Comput. Meth. Prog. Bio. 103(2), 104–112 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Iris Smit-Ockeloen
    • 1
  • Daniel Ruijters
    • 2
  • Marcel Breeuwer
    • 1
    • 2
  • Drazenko Babic
    • 2
  • Olivier Brina
    • 3
  • Vitor Mendes Pereira
    • 3
    • 4
  1. 1.Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Philips HealthcareBestThe Netherlands
  3. 3.Division of Neuroradiology, Department of Medical ImagingUniversity Hospitals of GenevaGenevaSwitzerland
  4. 4.Division of Neuroradiology, Department of Medical Imaging and Division of Neurosurgery, Department of Surgery, Toronto Western HospitalUniversity Health NetworkTorontoCanada

Personalised recommendations