Skip to main content

Biological Control and Pollination Services on Organic Farms

  • Chapter
  • First Online:
Advances in Insect Control and Resistance Management

Abstract

Organic farming is an ecologically responsible method of food production encompassing “holistic production systems that promote and enhance agro-ecosystem health, including biodiversity, biological cycles, and soil biological activity” (Dabbert et al. 2004) (Fig. 3.1). In contrast, many conventional farming systems sacrifice ecosystem services including biological control, pollination, and soil conservation for short-term increases in yield (Fig. 3.1). By conserving ecosystem services, organic farms generally produce yields only slightly lower than conventional farms with significantly less inputs (Crowder and Reganold 2015) (Fig. 3.1). The combination of high yields and organic premiums, which are paid by consumers in part because organic farming is considered more environmentally friendly, allows organic farms to often exceed the profits of conventional farms (Crowder and Reganold 2015).

Organic farming is an alternative agricultural system that encompasses holistic production tactics that promote and enhance ecosystem health. Organic farms rely on diverse communities of beneficial insects to provide critical ecosystem functions such as decomposition, biological control, and pollination. However, the conservation of ecosystem services in agricultural ecosystems including organic farms is a complex challenge, in part due to factors such as climate change and habitat loss. Organic farmers have begun to meet this challenge by adopting on-farm and landscape-level measures to preserve and restore ecosystem services, although more work is needed to stem the loss of global biodiversity. Here, we review the impacts of organic farming on communities of natural enemies and pollinators, and the services they provide. We also describe strategies currently used, and future research opportunities, that could further promote the conservation of these beneficial groups and their services in organic systems. Our review suggests that the conservation of natural enemies and pollinators on organic farms will require a multi-scale approach in which on-farm and landscape-level conservations are of equal importance. However, more research is needed to identify the particular practices that promote both of these beneficial groups simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldock KCR, Goddard MA, Hicks DM et al (2015) Where is the UK’ s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc R Soc B 282:20142849

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton B, Schmitz OJ (2009) Experimental warming transforms multiple predator effects in a grassland food web. Ecol Lett 12:1317–1325

    Article  PubMed  Google Scholar 

  • Batáry P, Dicks LV, Kleijn D et al (2015) The role of agri-environment schemes in conservation and environmental management. Conserv Biol 29:1006–1016

    Article  PubMed  PubMed Central  Google Scholar 

  • Bengtsson J, Ahnstrom J, Weibull A-C (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269

    Article  Google Scholar 

  • Biondi A, Mommaerts V, Smagghe G et al (2012) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68:1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Bommarco R, Lundin O, Smith HG, Rundlof M (2012) Drastic historic shifts in bumble-bee community composition in Sweden. Proc R Soc B 279:309–315

    Article  PubMed  Google Scholar 

  • Brittain C, Vighi M, Bommarco R et al (2010) Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl Ecol 11:106–115

    Article  CAS  Google Scholar 

  • Brittain C, Kremen C, Klein A-M (2013) Biodiversity buffers pollination from changes in environmental conditions. Glob Chang Biol 19:540–547

    Article  PubMed  Google Scholar 

  • Burkman CE, Gardiner MM (2014) Urban greenspace design and landscape context influence natural enemy community composition and function. Biol Control 75:58–67

    Article  Google Scholar 

  • Butchart SHM, Walpole M, Collen B (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Carré G, Roche P, Chifflet R et al (2009) Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric Ecosyst Environ 133:40–47

    Article  Google Scholar 

  • Carvalheiro LG, Seymour CL, Veldtman R, Nicolson SW (2010) Pollination services decline with distance from natural habitat even in biodiversity-rich areas. J Appl Ecol 47:810–820

    Article  Google Scholar 

  • Carvalheiro LG, Kunin WE, Keil P et al (2013) Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol Lett 16:870–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932

    Article  PubMed  Google Scholar 

  • Chisholm P, Gardiner M, Moon E, Crowder DW (2014) Tools and techniques for investigating impacts of habitat complexity on biological control. Biol Control 75:48–57

    Article  Google Scholar 

  • Christmann S, Aw-Hassan A (2012) Farming with alternative pollinators (FAP)—an overlooked win-win-strategy for climate change adaptation. Agric Ecosyst Environ 161:161–164

    Article  Google Scholar 

  • Cole LJ, Brocklehurst S, Robertson D et al (2015) Riparian buffer strips: their role in the conservation of insect pollinators in intensive grassland systems. Agric Ecosyst Environ 211:207–220

    Article  Google Scholar 

  • Crowder DW, Jabbour R (2014) Relationships between biodiversity and biological control in agroecosystems: current status and future challenges. Biol Control 75:8–17

    Article  Google Scholar 

  • Crowder DW, Reganold JP (2015) Financial competitiveness of organic agriculture on a global scale. Proc Natl Acad Sci U S A 112:7611–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466:109–112

    Article  CAS  PubMed  Google Scholar 

  • Crowder DW, Northfield TD, Gomulkiewicz R, Snyder WE (2012) Conserving and promoting evenness: organic farming and fire-based wildland management as case studies. Ecology 93:2001–2007

    Article  PubMed  Google Scholar 

  • Dabbert S, Haring AM, Zanoli R (2004) Organic farming: grassroots movement or policy directive? In: Haring AM, Dabbert S (eds) Organic farming: policies and prospects. Zed Books, London/New York

    Google Scholar 

  • de Sassi C, Tylianakis JM (2012) Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLoS ONE 7, e40557

    Article  PubMed  PubMed Central  Google Scholar 

  • Decourtye A, Mader E, Desneux N (2010) Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41:264–277

    Article  Google Scholar 

  • Devictor V, Whittaker RJ, Beltrame C (2010) Beyond scarcity: citizen science programmes as useful tools for conservation biogeography. Divers Distrib 16:354–362

    Article  Google Scholar 

  • Fiedler A, Landis D (2007) Attractiveness of Michigan native plants to arthropod natural enemies and herbivores. Environ Entomol 36:751–765

    Article  CAS  PubMed  Google Scholar 

  • Forman RTT, Sperling D, Bissonette JA et al (2003) Road ecology: science and solutions. Island Press, Washington, DC

    Google Scholar 

  • Forrest JRK (2015) Plant-pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 124:4–13

    Article  Google Scholar 

  • Gabriel D, Roschewitz I, Tscharntke T, Thies C (2006) Beta diversity at different spatial scales: plant communities in organic and conventional agriculture. Ecol Appl 16:2011–2021

    Article  PubMed  Google Scholar 

  • Gabriel D, Sait SM, Hodgson JA et al (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13:858–869

    Article  PubMed  Google Scholar 

  • Gabriel D, Sait SM, Kunin WE, Benton TG (2013) Food production vs. biodiversity: comparing organic and conventional agriculture. J Appl Ecol 50:355–364

    Article  Google Scholar 

  • Gardiner MM, Allee LL, Brown PM et al (2012) Lessons from lady beetles: accuracy of monitoring data from US and UK citizen-science programs. Front Ecol Environ 10:471–476

    Article  Google Scholar 

  • Gardiner MM, Prajzner PS, Burkman CE et al (2014) Vacant land conversion to community gardens: influences on generalist arthropod predators and biocontrol services in urban greenspaces. Urban Ecosyst 17:101–122

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2014) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  Google Scholar 

  • Geiger F, Bengtsson J, Berendse F et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105

    Article  CAS  Google Scholar 

  • Gillespie D, Nasreen A, Offat C et al (2012) Effects of simulated heat waves on an experimental community of pepper plants, green peach aphids and two parasitoid species. Oikos 121:149–159

    Article  Google Scholar 

  • Gilman S, Urban M, Tewksbury J et al (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331

    Article  PubMed  Google Scholar 

  • Girard M, Chagnon M, Fournier V (2012) Pollen diversity collected by honey bees in the vicinity of Vaccinium spp. crops and its importance for colony development. Botany 90:545–555

    Article  Google Scholar 

  • Gonthier DJ, Farinas S, Hsieh H et al (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc 281:20141358

    Article  Google Scholar 

  • Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. doi:10.1126/science.1255957

    Article  PubMed  Google Scholar 

  • Greenleaf SS, Kremen C (2006) Wild bee species increase tomato production and respond differently to surrounding land use in Northern California. Biol Conserv 133:81–87

    Article  Google Scholar 

  • Griffin JN, Byrnes JE, Cardinale BE (2013) Effects of predator richness on prey suppression: a meta-analysis. Ecology 94:2180–2187

    Article  PubMed  Google Scholar 

  • Gross K, Rosenheim JA (2011) Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecol Appl 7:2770–2780

    Article  Google Scholar 

  • Hanley N, Breeze TD, Ellis C, Goulson D (2015) Measuring the economic value of pollination services: principles, evidence and knowledge gaps. Ecosyst Serv 14:124–132

    Article  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD et al (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130

    Article  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361

    Article  Google Scholar 

  • Hopwood (2010) Pollinators and roadsides: managing roadsides for bees and butterflies. The Xerces Society for Invertebrate Conservation, Portland, 8 pp

    Google Scholar 

  • Howard E, Davis AK (2009) The fall migration flyways of monarch butterflies in eastern North America revealed by citizen scientists. J Insect Conserv 13:279–286

    Article  Google Scholar 

  • Jones VP, Brunner JF, Grove GG et al (2010) A web-based decision support system to enhance IPM programs in Washington tree fruit. Pest Manag Sci 66:587–595

    Article  CAS  PubMed  Google Scholar 

  • Jonsson M, Straub CS, Didham RK et al (2015) Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. J Appl Ecol 52:1272–1282

    Article  Google Scholar 

  • Kaartinen R, Hardwick B, Roslin T (2013) Using citizen scientists to measure an ecosystem service nationwide. Ecology 94:2645–2652

    Article  PubMed  Google Scholar 

  • Kennedy CM, Lonsdorf E, Neel MC et al (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599

    Article  PubMed  Google Scholar 

  • Kessler SC, Tiedeken EJ, Simcock KL et al (2015) Bees prefer foods containing neonicotinoid pesticides. Nature 521:74–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kevan PG (1999) Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agric Ecosyst Environ 74:373–393

    Article  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci U S A 99:16812–16816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremen C, Ullman KS, Thorp RW (2011) Evaluating the quality of citizen-scientist data on pollinator communities. Conserv Biol 25:607–617

    Article  CAS  PubMed  Google Scholar 

  • Krewenka KM, Holzschuh A, Tscharntke T, Dormann CF (2011) Landscape elements as potential barriers and corridors for bees, wasps and parasitoids. Biol Conserv 144:1816–1825

    Article  Google Scholar 

  • Kudo G (2013) Vulnerability of phenological synchrony between plants and pollinators in an alpine ecosystem. Ecol Res 29:571–581

    Article  Google Scholar 

  • Landis DA, Gardiner MM, van der Werf W, Swinton SM (2008) Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proc Natl Acad Sci U S A 105:20552–20557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Féon V, Burel F, Chifflet R et al (2013) Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric Ecosyst Environ 166:94–101

    Article  Google Scholar 

  • Letourneau DK, Jedlicka JA, Bothwell SG, et al (2009) Effects of natural enemy biodiversity on the supression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Syst 40:573–592

    Google Scholar 

  • Letourneau DK, Armbrecht I, Rivera BS et al (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21

    Article  PubMed  Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323

    Article  Google Scholar 

  • Macfadyen S, Gibson R, Polaszek A et al (2009) Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecol Lett 12:229–238

    Article  PubMed  Google Scholar 

  • Martins KT, Gonzalez A, Lechowicz MJ (2015) Pollination services are mediated by bee functional diversity and landscape context. Agric Ecosyst Environ 200:12–20

    Article  Google Scholar 

  • Matteson KC, Langellotto GA (2010) Determinates of inner city butterfly and bee species richness. Urban Ecosyst 13:333–347

    Article  Google Scholar 

  • McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol Conserv 129:372–382

    Article  Google Scholar 

  • Miller-Struttmann NE, Geib JC, Franklin JD et al (2015) Functional mismatch in a bumble bee pollination mutualism under climate change. Res Rep 78:75–78

    Google Scholar 

  • Morandin LA, Kremen C (2013) Bee preference for native versus exotic plants in restored agricultural hedgerows. Restor Ecol 21:26–32

    Article  Google Scholar 

  • Morandin LA, Winston ML, Abbott VA, Franklin MT (2007) Can pastureland increase wild bee abundance in agriculturally intense areas? Basic Appl Ecol 8:117–124

    Article  Google Scholar 

  • Muratet A, Fontaine B (2015) Contrasting impacts of pesticides on butterflies and bumblebees in private gardens in France. Biol Conserv 182:148–154

    Article  Google Scholar 

  • Ness JH (2006) A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113:506–514

    Article  Google Scholar 

  • Paoletti MG (1999) Using bioindicators based on biodiversity to assess landscape sustainability. Bioscience 74:1–18

    Google Scholar 

  • Pardee GL, Philpott MS (2014) Native plants are the bee’s knees: local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosyst 17:641–659

    Article  Google Scholar 

  • Roubos CR, Rodriguez-Saona C, Isaacs R (2014) Scale-dependent impacts of insecticides on arthropod biological control. Biol Control 75:28–38

    Article  CAS  Google Scholar 

  • Rundlöf M, Nilsson H, Smith HG (2008) Interacting effects of farming practice and landscape context on bumble bees. Biol Conserv 141:417–426

    Article  Google Scholar 

  • Russell KN, Ikerd H, Droege S (2005) The potential conservation value of unmowed powerline strips for native bees. Biol Conserv 124:133–148

    Article  Google Scholar 

  • Sandhu HS, Wratten SD, Cullen R (2010) Organic agriculture and ecosystem services. Environ Sci Policy 13:1–7

    Article  CAS  Google Scholar 

  • Shackelford G, Steward PR, Benton TG et al (2013) Comparison of pollinators and natural enemies: a metaanalysis of landscape and local effects on abundance and richness in crops. Biol Rev 88:1002–1021

    Article  PubMed  Google Scholar 

  • Shuler RE, Roulston TH, Farris GE (2005) Farming practices influence wild pollinator populations on squash and pumpkin. J Econ Entomol 98:790–795

    Article  PubMed  Google Scholar 

  • Sprayberry JDH, Ritter KA, Riffell JA (2013) The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior. PLoS ONE 8:1–9

    Article  Google Scholar 

  • Stallman HR (2011) Ecosystem services in agriculture: determining suitability for provision by collective management. Ecol Econ 71:131–139

    Article  Google Scholar 

  • Sunderland K, Samu F (2000) Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol Exp Appl 95:1–13

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity on ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Tuck S, Winqvist C, Mota F et al (2014) Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol 51:746–755

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner WR (2003) Citywide biological monitoring as a tool for ecology and conservation in urban landscapes: the case of the Tucson Bird Count. Landsc Urban Plan 65:149–166

    Article  Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–205

    Article  CAS  PubMed  Google Scholar 

  • Unruh TR, Pfannenstiel RS, Peters C et al (2012) Parasitism of leafrollers in Washington fruit orchards is enhanced by perimeter plantings of rose and strawberry. Biol Control 62:162–172

    Article  Google Scholar 

  • Vance MD, Fahrig L, Flather CH (2003) Effect of reproductive rate on minimum habitat requirements of forest-breeding birds. Ecology 84:2643–2653

    Article  Google Scholar 

  • Werling BP, Meehan TD, Robertson BA et al (2011) Biological control potential varies with changes in biofuel-crop plant communities and landscape perenniality. Global Chang Biol Bioenergy 3:347–359

    Article  Google Scholar 

  • Williams NM, Crone EE, Roulston TH et al (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291

    Google Scholar 

  • Willmer P (2012) Ecology: pollinator-plant synchrony tested by climate change. Curr Biol 22:R131–R132

    Article  CAS  PubMed  Google Scholar 

  • Winfree R, Gross BJ, Kremen C (2011) Valuing pollination services to agriculture. Ecol Econ 71:80–88

    Article  Google Scholar 

  • Wratten SD, Gillespie M, Decourtye A et al (2012) Pollinator habitat enhancement: benefits to other ecosystem services. Agric Ecosyst Environ 159:112–122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias H. Bloom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bloom, E.H., Crowder, D.W. (2016). Biological Control and Pollination Services on Organic Farms. In: Horowitz, A., Ishaaya, I. (eds) Advances in Insect Control and Resistance Management. Springer, Cham. https://doi.org/10.1007/978-3-319-31800-4_3

Download citation

Publish with us

Policies and ethics