Insecticide Resistance and Its Impact on Vector Control

Chapter

Abstract

Insect disease vector control is primarily based on the use of synthetic insecticides that are used either for indoor residual spraying (IRS) or the treatment of fabrics, particularly bed nets. As yet, there are still only four classes of public health insecticides available for most insect vector-borne diseases including malaria: pyrethroids, organochlorines, organophosphates (OPs) and carbamates. Whilst extensive deployment of long-lasting insecticide-treated bednets (LLINs), which are dependent on pyrethroids, is a contributing factor in the dramatic spread of pyrethroid resistance across Africa, the implementation of front-line alternatives such as carbamates is already being affected by resistance. The limited numbers of insecticides available and the speed at which insecticide resistance can take hold lead to fundamental questions about mechanisms of resistance, impact on vector control and ways to overcome insecticide resistance. The global plan for insecticide resistance management in malaria vectors (GPIRM) is a rallying call from the World Health Organization (WHO) to tackle these questions. Great strides have been made in identifying enzymes associated with insecticide metabolism in mosquitoes and applying new technology for monitoring and predicting resistance. This chapter explores the impact of insecticide resistance on vector control and recent developments in resistance research.

References

  1. Abdalla H, Wilding CS, Nardini L, Pignatelli P, Koekemoer LL, Ranson H, Coetzee M (2014) Insecticide resistance in Anopheles arabiensis in Sudan: temporal trends and underlying mechanisms. Parasit Vectors 7:213. doi:10.1186/1756-3305-7-213 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aïkpon R, Agossa F, Ossè R, Oussou O, Aïzoun N, Oké-Agbo F, Akogbéto M (2013) Bendiocarb resistance in Anopheles gambiae s.l. populations from Atacora department in Benin, West Africa: a threat for malaria vector control. Parasit Vectors 6:192. doi:10.1186/1756-3305-6-192 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akogbéto MC, Padonou GG, Gbénou D, Irish S, Yadouleton A (2010) Bendiocarb, a potential alternative against pyrethroid resistant Anopheles gambiae in Benin, West Africa. Malar J 9:204. doi:10.1186/1475-2875-9-204 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Akogbeto M, Padonou GG, Bankole HS, Gazard DK, Gbedjissi GL (2011) Dramatic decrease in malaria transmission after large-scale indoor residual spraying with bendiocarb in Benin, an area of high resistance of Anopheles gambiae to pyrethroids. Am J Trop Med Hyg 85:586–593. doi:10.4269/ajtmh.2011.10-0668 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alphey L, Nimmo D, Connell SO, Alphey N (2008) Insect population suppression using engineered insects. Adv Exp Med Biol 627:93–103PubMedCrossRefGoogle Scholar
  6. Amenya DA, Naguran R, Lo TC, Ranson H, Spillings BL, Wood OR, Brooke BD, Coetzee M, Koekemoer LL (2008) Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles Funestus, resistant to pyrethroids. Insect Mol Biol 17:19–25. doi:10.1111/j.1365-2583.2008.00776.x PubMedCrossRefGoogle Scholar
  7. Armstrong JA, Ramsdale CD, Ramakrishna V (1958) Insecticide resistance in Anopheles gambiae Giles in Western Sokoto, Northern Nigeria. Ann Trop Med Parasitol 52:247–256PubMedCrossRefGoogle Scholar
  8. Bagi J, Grisales N, Corkill R, Morgan JC, N’Falé S, Brogdon WG, Ranson H (2015) When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malar J 14:210. doi:10.1186/s12936-015-0721-4 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Balmert NJ, Rund SSC, Ghazi JP, Zhou P, Duffield GE (2014) Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. J Insect Physiol 64:30–39. doi:10.1016/j.jinsphys.2014.02.013 PubMedCrossRefGoogle Scholar
  10. Bass C, Nikou D, Vontas J, Donnelly MJ, Williamson MS, Field LM (2010) The vector population monitoring tool (VPMT): high-throughput DNA-based diagnostics for the monitoring of mosquito vector populations. Malar Res Treat 2010:190434. doi:10.4061/2010/190434 PubMedPubMedCentralGoogle Scholar
  11. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle KE, Moyes CL, Henry A, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, Eckhoff PA, Wenger EA, Brie O, Griffin JT, Fergus CA, Lynch M, Lindgren F, Cohen JM, Murray CLJ, Smith DL, Hay SI, Cibulskis RE, Gething PW (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526:207–11. doi:10.1038/nature15535 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brooke BD, Koekemoer LL (2010) Major effect genes or loose confederations? The development of insecticide resistance in the malaria vector Anopheles gambiae. Parasit Vectors 3:74. doi:10.1186/1756-3305-3-74 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brooke BD, Hunt RH, Coetzee M (2000) Resistance to dieldrin + fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Med Vet Entomol 14:190–194. doi:10.1046/j.1365-2915.2000.00222.x PubMedCrossRefGoogle Scholar
  14. Brooke BD, Hunt RH, Chandre F, Carnevale P, Coetzee M (2002) Stable chromosomal inversion polymorphisms and insecticide resistance in the malaria vector mosquito Anopheles gambiae (Diptera: Culicidae). J Med Entomol 39:568–573PubMedCrossRefGoogle Scholar
  15. Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB (2005) Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharmacol 68:942–951. doi:10.1124/mol.105.015313 PubMedCrossRefGoogle Scholar
  16. Cao CW, Zhang J, Gao XW, Liang P, Guo HL (2008) Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover). Pestic Biochem Physiol 90:175–180. doi:10.1016/j.pestbp.2007.11.004 CrossRefGoogle Scholar
  17. CDC (2012) CDC – Malaria – malaria worldwide – how can malaria cases and deaths be reduced? – indoor residual spraying [WWW document]. Atlanta. http://www.cdc.gov/malaria/malaria_worldwide/reduction/irs.html
  18. Chandor-Proust A, Bibby J, Regent-Kloeckner M, Roux J, Guittard-Crilat E, Poupardin R, Riaz MA, Paine M, Dauphin-Villemant C, Reynaud S, David JP (2013) The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. Biochem J 455:75–85. doi:10.1042/bj20130577 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chang X, Zhong D, Fang Q, Hartsel J, Zhou G, Shi L, Fang F, Zhu C, Yan G (2014) Multiple resistances and complex mechanisms of Anopheles sinensis mosquito: a major obstacle to mosquito-borne diseases control and elimination in China. PLoS Negl Trop Dis 8:e2889. doi:10.1371/journal.pntd.0002889 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chouaïbou M, Zivanovic GB, Knox TB, Jamet HP, Bonfoh B (2014) Synergist bioassays: a simple method for initial metabolic resistance investigation of field anopheles gambiae s.l. populations. Acta Trop 130:108–111. doi:10.1016/j.actatropica.2013.10.020 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ (2009) Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci USA 106:5731–5736, EpubPubMedPubMedCentralCrossRefGoogle Scholar
  22. Coetzee M, Hunt RH, Wilkerson R, Della Torre A, Coulibaly MB, Besansky NJ (2013a) Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 3619:246–274PubMedCrossRefGoogle Scholar
  23. Coetzee M, Kruger P, Hunt RH, Durrheim DN, Urbach J, Hansford CF (2013b) Malaria in South Africa: 110 years of learning to control the disease. S Afr Med J 103:770–778. doi:10.7196/SAMJ.7446 PubMedCrossRefGoogle Scholar
  24. Coleman M, Foster GM, Deb R, Pratap Singh R, Ismail HM, Shivam P, Ghosh AK, Dunkley S, Kumar V, Coleman M, Hemingway J, Paine MJI, Das P (2015) DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India. Proc Natl Acad Sci 112:8573–8578. doi:10.1073/pnas.1507782112, 201507782PubMedPubMedCentralCrossRefGoogle Scholar
  25. Corbel V, Guessan RN (2013) Distribution, mechanisms, impact and management of insecticide resistance in malaria vectors?: a pragmatic review. anopheles mosquitoes – new insights into Malar. Vectors 813. doi:10.5772/3392
  26. Corbel V, N’Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, Akogbeto M, Hougard JM, Rowland M (2007) Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop 101:207–216, doi:S0001-706X(07)00051-4 [pii]\r10.1016/j.actatropica.2007.01.005PubMedCrossRefGoogle Scholar
  27. Cui F, Qu H, Cong J, Liu X-L, Qiao C-L (2007) Do mosquitoes acquire organophosphate resistance by functional changes in carboxylesterases? FASEB J 21:3584–3591. doi:10.1096/fj.07-8237com PubMedCrossRefGoogle Scholar
  28. Dame DA, Curtis CF, Benedict MQ, Robinson AS, Knols BGJ (2009) Historical applications of induced sterilisation in field populations of mosquitoes. Malar J 8(Suppl 2):S2. doi:10.1186/1475-2875-8-S2-S2 PubMedPubMedCentralCrossRefGoogle Scholar
  29. David J, Ismail HM, Chandor-proust A, Ingraham MJ, John M, Paine I (2013) Role of cytochrome P450s in insecticide resistance?: impact on the control of mosquito-borne diseases and use of insecticides on Earth Role of cytochrome P450s in insecticide resistance?: impact on the control of mosquito-borne diseases and use of insecti. Philos Trans R Soc Lond B Biol Sci 368:20120429PubMedPubMedCentralCrossRefGoogle Scholar
  30. David J-P, Faucon F, Chandor-Proust A, Poupardin R, Riaz MA, Bonin A, Navratil V, Reynaud S (2014) Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing. BMC Genomics 15:174. doi:10.1186/1471-2164-15-174 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Devine GJ, Killeen GF (2010) The potential of a new larviciding method for the control of malaria vectors. Malar J 9:142. doi:10.1186/1475-2875-9-142 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Djogbénou L, Weill M, Hougard JM, Raymond M, Akogbéto M, Chandre F (2007) Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance. J Med Entomol 44:805–810. doi:10.1603/0022-2585(2007)44[805:COIAAI]2.0.CO;2 PubMedGoogle Scholar
  33. Djogbenou L, Noel V, Agnew P (2010) Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malar J 9:12. doi:10.1186/1475-2875-9-12 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, Strode C (2008) Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics 9:538. doi:10.1186/1471-2164-9-538 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, Black WC t (2009) Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 25:213–219. doi:10.1016/j.pt.2009.02.007 PubMedCrossRefGoogle Scholar
  36. Dowd AJ, Steven A, Morou E, Hemingway J, Vontas J, Paine MJI (2009) A simple glutathione transferase-based colorimetric endpoint assay for insecticide detection. Enzym Microb Technol 45:164–168. doi:10.1016/j.enzmictec.2009.05.008 CrossRefGoogle Scholar
  37. Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ, Coetzee M, Zheng L (2005) Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol 14:179–183. doi:10.1111/j.1365-2583.2005.00544.x PubMedCrossRefGoogle Scholar
  38. Edi CV, Djogbénou L, Jenkins AM, Regna K, Muskavitch MAT, Poupardin R, Jones CM, Essandoh J, Kétoh GK, Paine MJI, Koudou BG, Donnelly MJ, Ranson H, Weetman D (2014) CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito anopheles gambiae. PLoS Genet 10:e1004236. doi:10.1371/journal.pgen.1004236 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Faucon F, Dusfour I, Gaude T, Navratil V, Boyer F, Chandre F, Sirisopa P, Thanispong K, Juntarajumnong W, Poupardin R, Chareonviriyaphap T, Girod R, Corbel V, Reynaud S, David J (2015) Unravelling genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res 25:1–13. doi:10.1101/gr.189225.115
  40. Feyereisen R (2005) Insect P450. In: Gilbert LI, Latrou K, Gill SS (eds) Comprehensive molecule insect science. Elsevier, OxfordGoogle Scholar
  41. Ffrench-Constant RH, Rocheleau T a, Steichen JC, Chalmers a E (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451. doi:10.1038/363449a0 PubMedCrossRefGoogle Scholar
  42. Fuseini G, Ebsworth P, Jones S, Knight D (2011) The efficacy of ACTELLIC 50 EC, pirimiphos methyl, for indoor residual spraying in Ahafo, Ghana: area of high vector resistance to pyrethroids and organochlorines. J Med Entomol 48:437–440. doi:10.1603/ME09286 PubMedCrossRefGoogle Scholar
  43. Gillies M, Coetzee M (1987) A supplement to the Anophelinae of Africa South of the Sahara. Publ S Afr Inst Med Res 55:63Google Scholar
  44. Gilotra SK (1965) Inheritance of dieldrin resistance in the larvae of Anopheles albimanus Wiedemann. Am J Trop Med Hyg 14:838–845PubMedGoogle Scholar
  45. Green MD, Atieli F, Akogbeto M (2009) Rapid colorimetric field test to determine levels of deltamethrin on PermaNet surfaces: association with mosquito bioactivity. Trop Med Int Health 14:381–388PubMedCrossRefGoogle Scholar
  46. Guengerich FP (2005) Human cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry. Kluwer Academic/Plenum Press, New YorkGoogle Scholar
  47. Hamon J, Sales S, Venard P, Coz J, Brengues J (1968) The presence in southwest Upper Volta of populations of Anopheles funestus Giles resistant to dieldrin. Med Trop 28:221–226Google Scholar
  48. Hanioka N, Takeda Y, Jinno H, Tanaka-Kagawa T, Naito S, Koeda A, Shimizu T, Nomura M, Narimatsu S (2006) Functional characterization of human and cynomolgus monkey UDP-glucuronosyltransferase 1A6 enzymes. Chem Biol Interact 164:136–145PubMedCrossRefGoogle Scholar
  49. Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M (2000) Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol 14:181–189. doi:10.1046/j.1365-2915.2000.00234.x PubMedCrossRefGoogle Scholar
  50. Hargreaves K, Hunt RH, Brooke BD, Mthembu J, Weeto MM, Awolola TS, Coetzee M (2003) Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Med Vet Entomol 17:417–422. doi:10.1111/j.1365-2915.2003.00460.x PubMedCrossRefGoogle Scholar
  51. Hemingway J (1983) Biochemical studies on malathion resistance in Anopheles arabiensis from Sudan. Trans R Soc Trop Med Hyg 77:477–480. doi:10.1016/0035-9203(83)90118-9 PubMedCrossRefGoogle Scholar
  52. Hemingway J (1985) Malathion carboxylesterase enzymes in Anopheles arabiensis from Sudan. Pestic Biochem Physiol 23:309–313. doi:10.1016/0048-3575(85)90091-4 CrossRefGoogle Scholar
  53. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391. doi:10.1146/annurev.ento.45.1.371 PubMedCrossRefGoogle Scholar
  54. Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665. doi:10.1016/j.ibmb.2004.03.018 PubMedCrossRefGoogle Scholar
  55. Hosie a M, Baylis H a, Buckingham SD, Sattelle DB (1995) Actions of the insecticide fipronil, on dieldrin-sensitive and- resistant GABA receptors of Drosophila melanogaster. Br J Pharmacol 115:909–912. doi:10.1111/j.1476-5381.1995.tb15896.x PubMedPubMedCentralCrossRefGoogle Scholar
  56. Insecticide resistance action committee (IRAC) (2006) Prevention and management of insecticide resistance in vectors and pests of public health importance. Available: https://croplife.org/wp-content/uploads/pdf_files/IRAC-Prevention-management-of-insecticide-resistance-in-vectors-pests-of-public-health-importance.pdf
  57. Irving H, Riveron JM, Ibrahim SS, Lobo NF, Wondji CS (2012) Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestus. Heredity (Edinb) 109:383–392. doi:10.1038/hdy.2012.53 CrossRefGoogle Scholar
  58. Ismail HM, O’Neill PM, Hong DW, Finn RD, Henderson CJ, Wright AT, Cravatt BF, Hemingway J, Paine MJI (2013) Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions. Proc Natl Acad Sci U S A 110:19766–19771. doi:10.1073/pnas.1320185110 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ismail HM, Kumar V, Singh RP, Williams C, Shivam P, Ghosh A, Deb R, Foster GM, Hemingway J, Coleman M, Coleman M, Das P, Paine MJI (2016) Development of a simple dipstick assay for operational monitoring of DDT. PloS NTD. doi:10.1371/journal.pntd.0004324 Google Scholar
  60. Jensen NB, Zagrobelny M, Hjernø K, Olsen CE, Houghton-Larsen J, Borch J, Møller BL, Bak S (2011) Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nat Commun 2:273. doi:10.1038/ncomms1865 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ, Wilding CS (2012a) Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc Natl Acad Sci U S A 109(17):6614–6619. doi:10.1073/pnas.1201475109, Epub 2012 Apr 9PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jones CM, Toé HK, Sanou A, Namountougou M, Hughes A, Diabaté A, Dabiré R, Simard F, Ranson H (2012b) Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso. PLoS One 7:e45995. doi:10.1371/journal.pone.0045995 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jones CM, Haji K a, Khatib BO, Bagi J, Mcha J, Devine GJ, Daley M, Kabula B, Ali AS, Majambere S, Ranson H (2013) The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasit Vectors 6:343. doi:10.1186/1756-3305-6-343 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Klassen W (2009) Introduction: development of the sterile insect technique for African malaria vectors. Malar J 8:I1. doi:10.1186/1475-2875-8-S2-I1 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kleinschmidt I, Schwabe C, Shiva M, Segura JL, Sima V, Mabunda SJA, Coleman M (2009) Combining indoor residual spraying and insecticide-treated net interventions. Am J Trop Med Hyg 81:519–524, doi:81/3/519 [pii]PubMedPubMedCentralGoogle Scholar
  66. Kleinschmidt I, Mnzava AP, Kafy HT, Mbogo C, Bashir AI, Bigoga J, Adechoubou A, Raghavendra K, Knox TB, Malik EM, Nkuni ZJ, Bayoh N, Ochomo E, Fondjo E, Kouambeng C, Awono-Ambene HP, Etang J, Akogbeto M, Bhatt R, Swain DK, Kinyari T, Njagi K, Muthami L, Subramaniam K, Bradley J, West P, Massougbodji A, Okê-Sopoh M, Hounto A, Elmardi K, Valecha N, Kamau L, Mathenge E, Donnelly MJ (2015) Design of a study to determine the impact of insecticide resistance on malaria vector control: a multi-country investigation. Malar J 14:282. doi:10.1186/s12936-015-0782-4 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Klinkenberg E, Konradsen F, Herrel N, Mukhtar M, van der Hoek W, Amerasinghe FP (2004) Malaria vectors in the changing environment of the southern Punjab. Pak Trans R Soc Trop Med Hyg 98:442–449. doi:10.1016/j.trstmh.2003.11.007 CrossRefGoogle Scholar
  68. Knox TB, Juma EO, Ochomo EO, Pates Jamet H, Ndungo L, Chege P, Bayoh NM, N’guessan R, Christian RN, Hunt RH, Coetzee M (2014) An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region. Parasit Vectors 7:76. doi:10.1186/1756-3305-7-76 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Koekemoer LL, Spillings BL, Christian RN, Lo T-CM, Kaiser ML, Norton R a I, Oliver SV, Choi KS, Brooke BD, Hunt RH, Coetzee M (2011) Multiple insecticide resistance in anopheles gambiae (Diptera: Culicidae) from Pointe Noire, Republic of the Congo. Vector Borne Zoonotic Dis 11:1193–1200. doi:10.1186/1475-2875-9-S2-P17 PubMedCrossRefGoogle Scholar
  70. Krafsur ES (1998) Sterile insect technique for suppressing and eradicating insect population: 55 years and counting l. J Agric Entomol 15:303–317Google Scholar
  71. Lindblade KA, Mwandama D, Mzilahowa T, Steinhardt L, Gimnig J, Shah M, Bauleni A, Wong J, Wiegand R, Howell P, Zoya J, Chiphwanya J, Mathanga DP (2015) A cohort study of the effectiveness of insecticide-treated bed nets to prevent malaria in an area of moderate pyrethroid resistance. Malawi Malar J 14:31. doi:10.1186/s12936-015-0554-1 PubMedCrossRefGoogle Scholar
  72. Lumjuan N, McCarroll L, Prapanthadara LA, Hemingway J, Ranson H (2005) Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem Mol Biol 35:861–871PubMedCrossRefGoogle Scholar
  73. Lumjuan N, Wicheer J, Leelapat P, Choochote W, Somboon P (2014) Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism. PLoS One 9:1–8. doi:10.1371/journal.pone.0102746 CrossRefGoogle Scholar
  74. Lynd A, Weetman D, Barbosa S, Egyir Yawson A, Mitchell S, Pinto J, Hastings I, Donnelly MJ (2010) Field, genetic, and modeling approaches show strong positive selection acting upon an insecticide resistance mutation in Anopheles gambiae s.s. Mol Biol Evol 27:1117–1125. doi:10.1093/molbev/msq002 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Maharaj R, Raman J, Morris N, Moonasar D, Durrheim DN, Seocharan I, Kruger P, Shandukani B, Kleinschmidt I (2013) Epidemiology of malaria in South Africa: from control to elimination. S Afr Med J. doi:10.7196/SAMJ.7441 Google Scholar
  76. Main BJ, Lee Y, Collier TC, Norris LC, Brisco K, Fofana A, Cornel AJ, Lanzaro GC (2015) Complex genome evolution in Anopheles coluzzii associated with increased insecticide usage in Mali. Mol Ecol. doi:10.1111/mec.13382 PubMedGoogle Scholar
  77. Marcombe S, Mathieu RB, Pocquet N, Riaz MA, Poupardin R, Sélior S, Darriet F, Reynaud S, Yébakima A, Corbel V, David JP, Chandre F (2012) Insecticide resistance in the dengue vector aedes aegypti from martinique: distribution, mechanisms and relations with environmental factors. PLoS One 7:e30989. doi:10.1371/journal.pone.0030989 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D (1998) Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 7:179–184PubMedCrossRefGoogle Scholar
  79. Matambo TS, Paine MJI, Coetzee M, Koekemoer LL (2010) Sequence characterization of cytochrome P450 CYP6P9 in pyrethroid resistant and susceptible Anopheles funestus (Diptera: Culicidae). Genet Mol Res 9:554–564. doi:10.4238/vol9-1gmr719 PubMedCrossRefGoogle Scholar
  80. Mclaughlin LA, Niazi U, Bibby J, David JP, Vontas J, Hemingway J, Ranson H, Sutcliffe MJ, Paine MJI (2008) Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2. Insect Mol Biol 17:125–135. doi:10.1111/j.1365-2583.2007.00788.x PubMedCrossRefGoogle Scholar
  81. Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B, Wernsdorfer WH (2009) From malaria control to eradication: the WHO perspective. Trop Med Int Health 14:802–809. doi:10.1111/j.1365-3156.2009.02287.x PubMedCrossRefGoogle Scholar
  82. Metcalf RL (1989) Insect resistance to insecticides. Pestic Sci 26:333–358. doi:10.1002/ps.2780260403 CrossRefGoogle Scholar
  83. Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyir-Yawson A, Field SG, Hemingway J, Paine MJI, Ranson H, Donnelly MJ (2012) Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci U S A 109:6147–6152. doi:10.1073/pnas.1203452109 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mitchell SN, Rigden DJ, Dowd AJ, Lu F, Wilding CS, Weetman D, Dadzie S, Jenkins AM, Regna K, Boko P, Djogbenou L, Muskavitch M a T, Ranson H, Paine MJI, Mayans O, Donnelly MJ (2014) Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae. PLoS One 9:e92662. doi:10.1371/journal.pone.0092662 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, Renshaw M (2015) Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J 14:173. doi:10.1186/s12936-015-0693-4 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Morou E, Dowd AJ, Rajatileka S, Steven A, Hemingway J, Ranson H, Paine M, Vontas J (2010) A simple colorimetric assay for specific detection of glutathione-S transferase activity associated with DDT resistance in mosquitoes. PLoS Negl Trop Dis 4:e808PubMedPubMedCentralCrossRefGoogle Scholar
  87. Muller P, Donnelly MJ, Ranson H (2007) Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genomics 8:36. doi:10.1186/1471-2164-8-36 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Müller P, Chouaïbou M, Pignatelli P, Etang J, Walker ED, Donnelly MJ, Simard F, Ranson H (2008) Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Mol Ecol 17:1145–1155. doi:10.1111/j.1365-294X.2007.03617.x PubMedCrossRefGoogle Scholar
  89. Muller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, Yawson AE, Mitchell SN, Ranson H, Hemingway J, Paine MJI, Donnelly MJ (2008) Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 4:e1000286. doi:10.1371/journal.pgen.1000286 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Munhenga G, Brooke BD, Chirwa TF, Hunt RH, Coetzee M, Govender D, Koekemoer LL (2011) Evaluating the potential of the sterile insect technique for malaria control: relative fitness and mating compatibility between laboratory colonized and a wild population of Anopheles arabiensis from the Kruger National Park, South Africa. Parasit Vectors 4:208. doi:10.1186/1756-3305-4-208 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Nájera JA, González-Silva M, Alonso PL (2011) Some lessons for the future from the Global Malaria Eradication Programme (1955–1969). PLoS Med 8:e1000412. doi:10.1371/journal.pmed.1000412 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Oliva CF, Vreysen MJB, Dupé S, Lees RS, Gilles JRL, Gouagna LC, Chhem R (2014) Current status and future challenges for controlling malaria with the sterile insect technique: technical and social perspectives. Acta Trop 132:S130–S139. doi:10.1016/j.actatropica.2013.11.019 PubMedCrossRefGoogle Scholar
  93. Overgaard HJ, Reddy VP, Abaga S, Matias A, Reddy MR, Kulkarni V, Schwabe C, Segura L, Kleinschmidt I, Slotman M a (2012) Malaria transmission after five years of vector control on Bioko island, equatorial guinea. Parasit Vectors 5:253. doi:10.1186/1756-3305-5-253 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Patel TB, Ramachandra RT, Halgeri AV, Deobhankar RB (1958) A preliminary note on a probable case of dieldrin resistance in Anopheles culicifacies in Thana District, Bombay State. Indian J Malariol 12:367–370PubMedGoogle Scholar
  95. Pinto J, Lynd A, Vicente JL, Santolamazza F, Randle NP, Gentile G, Moreno M, Simard F, Charlwood JD, do Rosário VE, Caccone A, Della Torre A, Donnelly MJ (2007) Multiple origins of knockdown resistance mutations in the Afrotropical mosquito vector Anopheles gambiae. PLoS One 2:e1243. doi:10.1371/journal.pone.0001243 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Prapanthadara L, Koottathep S, Promtet N, Suwonkerd W, Ketterman AJ, Somboon P (2000) Correlation of glutathione S-transferase and DDT dehydrochlorinase activities with DDT susceptibility in Anopheles and Culex mosquitos from northern Thailand. Southeast Asian J Trop Med Public Health 31:111–118PubMedGoogle Scholar
  97. Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci. doi:10.1073/pnas.1208650109 Google Scholar
  98. Raghavendra KS (2002) Chemical insecticides in malaria control in India. ICMR Bull 32:93–99Google Scholar
  99. Ranson H, Prapanthadara LA, Hemingway J (1997) Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem J 324(Pt 1):97–102PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH (2000) Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 9:491–497PubMedCrossRefGoogle Scholar
  101. Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbe C, Yangalbe-Kalnone E, Sagnon N, Simard F, Coetzee M (2009) Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J 8:299. doi:10.1186/1475-2875-8-299 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. doi:10.1016/j.pt.2010.08.004 PubMedGoogle Scholar
  103. Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB (2005) Ion channels: molecular targets of neuroactive insecticides. Invertebr Neurosci 5:119–133. doi:10.1007/s10158-005-0004-9 CrossRefGoogle Scholar
  104. Rivero A, Vézilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog 6:5–6. doi:10.1371/journal.ppat.1001000 CrossRefGoogle Scholar
  105. Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS, Paine MJI, Wondji CS (2013) Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proc Natl Acad Sci U S A 110:252–257. doi:10.1073/pnas.1216705110 PubMedCrossRefGoogle Scholar
  106. Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, Ismail HM, Hemingway J, Ranson H, Albert A, Wondji CS (2014) A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol 15:R27. doi:10.1186/gb-2014-15-2-r27 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Russell TL, Morgan JC, Ismail H, Kaur H, Eggelte T, Oladepo F, Amon J, Hemingway J, Iata H, Paine MJ (2014) Evaluating the feasibility of using insecticide quantification kits (IQK) for estimating cyanopyrethroid levels for indoor residual spraying in Vanuatu. Malar J 13:178. doi:10.1186/1475-2875-13-178 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Santolamazza F, Calzetta M, Etang J, Barrese E, Dia I, Caccone A, Donnelly MJ, Petrarca V, Simard F, Pinto J, della Torre A (2008) Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar J 7:74. doi:10.1186/1475-2875-7-74 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Scott JG (1999) Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol. doi:10.1016/S0965-1748(99)00038-7 PubMedGoogle Scholar
  110. Service MW (1960) A taxonomic study of Anopheles funestus funestus Giles (Diptera: Culicidae) from southern and northern Nigeria, with notes on its varieties and synonyms. Proc Entomol Soc Lond Ser 29:77–84Google Scholar
  111. Sharp BL, Ridl FC, Govender D, Kuklinski J, Kleinschmidt I (2007) Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea. Malar J 6:52. doi:10.1186/1475-2875-6-52 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Snow RW, Kibuchi E, Karuri SW, Sang G, Gitonga CW, Mwandawiro C, Bejon P, Noor AM (2015) Changing malaria prevalence on the Kenyan coast since 1974: climate, drugs and vector control. PLoS One 10:e0128792. doi:10.1371/journal.pone.0128792 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O’Neill PM, Lian LY, Muller P, Nikou D, Steven A, Hemingway J, Sutcliffe MJ, Paine MJI (2011) Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol 41:492–502. doi:10.1016/j.ibmb.2011.02.003 PubMedCrossRefGoogle Scholar
  114. Stevenson BJ, Pignatelli P, Nikou D, Paine MJI (2012) Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing New tools to combat insecticide resistance. PLoS Negl Trop Dis 6:E1595. doi:10.1371/Journal.Pntd.0001595 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Strode C, de Melo-Santos M, Magalhães T, Araújo A, Ayres C (2012) Expression profile of genes during resistance reversal in a temephos selected strain of the dengue vector, Aedes aegypti. PLoS One 7:1–8. doi:10.1371/journal.pone.0039439 CrossRefGoogle Scholar
  116. Strode C, Donegan S, Garner P, Enayati AA, Hemingway J (2014) The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med 11:e1001619. doi:10.1371/journal.pmed.1001619 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Taylor-Wells J, Brooke BD, Bermudez I, Jones AK (2015) Two point mutations in the Anopheles gambiae Rdl GABA receptor reduce sensitivity to the antagonistic actions of fipronil, imidacloprid and deltamethrin. J Neurochem 135:705–713PubMedCrossRefGoogle Scholar
  118. Thomsen EK, Strode C, Hemmings K, Hughes AJ, Chanda E, Musapa M, Kamuliwo M, Phiri FN, Muzia L, Chanda J, Kandyata A, Chirwa B, Poer K, Hemingway J, Wondji CS, Ranson H, Coleman M (2014) Underpinning sustainable vector control through informed insecticide resistance management. PLoS One 9:e99822. doi:10.1371/journal.pone.0099822 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Toé KH, N’Falé S, Dabiré RK, Ranson H, Jones CM (2015) The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics 16:1–11. doi:10.1186/s12864-015-1342-6 CrossRefGoogle Scholar
  120. Trape JF, Tall A, Diagne N, Ndiath O, Ly AB, Faye J, Dieye-Ba F, Roucher C, Bouganali C, Badiane A, Sarr FD, Mazenot C, Touré-Baldé A, Raoult D, Druilhe P, Mercereau-Puijalon O, Rogier C, Sokhna C (2011) Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. Lancet Infect Dis 11:925–932. doi:10.1016/S1473-3099(11)70194-3 PubMedCrossRefGoogle Scholar
  121. Trape J-F, Tall A, Sokhna C, Ly AB, Diagne N, Ndiath O, Mazenot C, Richard V, Badiane A, Dieye-Ba F, Faye J, Ndiaye G, Diene Sarr F, Roucher C, Bouganali C, Bassène H, Touré-Baldé A, Roussilhon C, Perraut R, Spiegel A, Sarthou J-L, da Silva LP, Mercereau-Puijalon O, Druilhe P, Rogier C (2015) The rise and fall of malaria in a west African rural community, Dielmo, Senegal, from 1990 to 2012: a 22 year longitudinal study. Lancet Infect Dis 14:476–488. doi:10.1016/S1473-3099(14)70712-1 CrossRefGoogle Scholar
  122. Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, Bottomley C, Lindsay SW (2013) Mosquito larval source management for controlling malaria. Cochrane Database Syst Rev 8:CD008923. doi:10.1002/14651858.CD008923.pub2 PubMedPubMedCentralGoogle Scholar
  123. van den Berg H, Zaim M, Yadav RS, Soares A, Ameneshewa B, Mnzava A, Hii J, Dash AP, Ejov M (2012) Global trends in the use of insecticides to control vector-borne diseases. Environ Health Perspect 120:577–582. doi:10.1289/Ehp.1104340 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Verhaeghen K, Van Bortel W, Roelants P, Backeljau T, Coosemans M (2006) Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis. Malar J 5:16. doi:10.1186/1475-2875-5-16 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Verhaeghen K, Bortel WV, Roelants P, Okello PE, Talisuna A, Coosemans M (2010) Spatio-temporal patterns in kdr frequency in permethrin and DDT resistant Anopheles gambiae s.s. from Uganda. Am J Trop Med Hyg 82:566–573. doi:10.4269/ajtmh.2010.08-0668 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Vezenegho SB, Brooke BD, Hunt RH, Coetzee M, Koekemoer LL (2009) Malaria vector composition and insecticide susceptibility status in Guinea Conakry, West Africa. Med Vet Entomol 23:326–334. doi:10.1111/j.1365-2915.2009.00840.x PubMedCrossRefGoogle Scholar
  127. Vontas JG, Small GJ, Hemingway J (2001) Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357:65–72PubMedPubMedCentralCrossRefGoogle Scholar
  128. Vontas JG, Small GJ, Nikou DC, Ranson H, Hemingway J (2002) Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362:329–337PubMedPubMedCentralCrossRefGoogle Scholar
  129. Weetman D, Mitchell SN, Wilding CS, Birks DP, Yawson AE, Essandoh J, Mawejje HD, Djogbenou LS, Steen K, Rippon EJ, Clarkson CS, Field SG, Rigden DJ, Donnelly MJ (2015) Contemporary evolution of resistance at the major insecticide target site gene Ace-1 by mutation and copy number variation in the malaria mosquito Anopheles gambiae. Mol Ecol 24(11):2656–2672. doi:10.1111/mec.13197 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Weill M, Chandre F, Brengues C, Manguin S, Akogbeto M, Pasteur N, Guillet P, Raymond M (2000) The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Mol Biol 9:451–455. doi:10.1046/j.1365-2583.2000.00206.x PubMedCrossRefGoogle Scholar
  131. Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M (2004) The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol 13:1–7, doi:452 [pii]PubMedCrossRefGoogle Scholar
  132. WHO (2006) Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. WHO Pestic Eval Scheme. 2006. Available: http://apps.who.int/iris/bitstream/10665/69296/1/WHO_CDS_NTD_WHOPES_GCDPP_2006.3_eng.pdf
  133. WHO (2013) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. World Health Organization, Geneva, Available: http://www.who.int/malaria/publications/atoz/9789241505154/en/ Google Scholar
  134. WHO (2015) Indoor residual spraying: an operational manual for indoor residual spraying (IRS) for malaria transmission control and elimination. Available: http://www.who.int/malaria/publications/atoz/9789241508940/en/
  135. Wilding CS, Weetman D, Steen K, Donnelly MJ (2009) High, clustered, nucleotide diversity in the genome of Anopheles gambiae revealed through pooled-template sequencing: implications for high-throughput genotyping protocols. BMC Genomics 10:320. doi:10.1186/1471-2164-10-320 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wilding CS, Smith I, Lynd A, Yawson AE, Weetman D, Paine MJI, Donnelly MJ (2012) A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: functional characterisation and signatures of selection. Insect Biochem Mol Biol 42:699–707. doi:10.1016/j.ibmb.2012.06.003 PubMedCrossRefGoogle Scholar
  137. Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH, Coetzee M, Hemingway J, Ranson H (2009) Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res 19:452–459. doi:10.1101/gr.087916.108 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wondji CS, Dabire RK, Tukur Z, Irving H, Djouaka R, Morgan JC (2011) Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa. Insect Biochem Mol Biol 41:484–491. doi:10.1016/j.ibmb.2011.03.012 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, Rehman A, Morgan J, Barnes KG, Hemingway J (2012) Impact of pyrethroid resistance on operational malaria control in Malawi. Proc Natl Acad Sci U S A 109:19063–19070. doi:10.1073/pnas.1217229109 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wood O, Hanrahan S, Coetzee M, Koekemoer L, Brooke B (2010) Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors 3:67. doi:10.1186/1756-3305-3-67 PubMedPubMedCentralCrossRefGoogle Scholar
  141. World Health Organization. Global Malaria Programme. (2012) Global plan for insecticide resistance management in malaria vectors. World Health Organization, GenevaGoogle Scholar
  142. Wright AT, Cravatt BF (2007) Chemical proteomic probes for profiling cytochrome p450 activities and drug interactions in vivo. Chem Biol 14:1043–1051PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wright AT, Song JD, Cravatt BF (2009) A suite of activity-based probes for human cytochrome P450 enzymes. J Am Chem Soc 131:10692–10700PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
  2. 2.National Institute for Communicable Diseases, Johannesburg & Wits Research Institute for Malaria, School of PathologyUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations