Advertisement

Number and Magnitude

  • Francesca Biagioli
Chapter
Part of the Archimedes book series (ARIM, volume 46)

Abstract

One of the issues at stake in the discussion about the origin and meaning of geometrical axioms was to establish the preconditions for the possibility of spatial measurement. A related issue was to analyze the concept of number to gain insights into its relation to that of magnitude. Despite the traditional definition of arithmetic as the theory of quantities, numbers cannot be identified as magnitudes. Numbers can only represent magnitudes in measurement situations. In order to justify the use of numbers in modeling measurement situations, some conditions are required. The study of these conditions is now known as measurement theory. Helmholtz has been acknowledged as one of the forefathers of measurement theory. However, the connection between Helmholtz’s analysis of measurement and his inquiry into the foundations of geometry has not received much attention.

This chapter deals with the philosophical aspect of Helmholtz’s theory and with the psychological interpretation of Kant’s forms of intuition proposed by Helmholtz. The psychological part of Helmholtz’s theory of measurement may not overcome compelling objections. Nevertheless, I rely on the reception of Helmholtz’s views about measurement in neo-Kantianism to reconsider the transcendental structure of Helmholtz’s argument for the applicability of mathematics: additive principles can be established independently of the entities to be measured, although they are necessary for judgments about quantities to be valid.

Keywords

Cardinal Number Physical Magnitude Transcendental Argument Free Mobility Empirical Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Biagioli, Francesca. 2013. Between Kantianism and empiricism: Otto Hölder’s philosophy of geometry. Philosophia Scientiae 17.1: La pensée épistémologique de Otto Hölder, ed. Paola Cantù and Oliver Schlaudt, 71–92.Google Scholar
  2. Biagioli, Francesca. 2014. What does it mean that “space can be transcendental without the axioms being so”? Helmholtz’s claim in context. Journal for General Philosophy of Science 45: 1–21.CrossRefGoogle Scholar
  3. Campbell, Norman Robert. 1920. Physics: The elements. Cambridge: Cambridge University Press.Google Scholar
  4. Cantù, Paola. 2008. Mathematik als Größenlehre. In Wolffiana, 2: Christian Wolff und die europäische Aufklärung. Akten des 1. Internationalen Christian-Wolff-Kongresses, Halle (Saale), 48 April 2004. Part 4. Section 8: Mathematik und Naturwissenschaften, ed. Jürgen Stolzenberg and Oliver-Pierre Rudolph, 13–24. Hildesheim: Olms.Google Scholar
  5. Cassirer, Ernst. 1907. Kant und die moderne Mathematik. Kant-Studien 12: 1–49.CrossRefGoogle Scholar
  6. Cassirer, Ernst. 1910. Substanzbegriff und Funktionsbegriff: Untersuchungen über die Grundfragen der Erkenntniskritik. Berlin: B. Cassirer. English edition: Cassirer, Ernst. 1923. Substance and Function and Einstein’s Theory of Relativity (trans: Swabey, Marie Collins and Swabey, William Curtis). Chicago: Open Court.Google Scholar
  7. Cassirer. Ernst. 1929. Philosophie der symbolischen Formen. Vol. 3: Phänomenologie der Erkenntnis. Berlin: B. Cassirer.Google Scholar
  8. Cassirer, Ernst. 1957. Das Erkenntnisproblem in der Philosophie und Wissenschaft der neueren Zeit. Vol. 4: Von Hegels Tod bis zur Gegenwart: (1832–1932). Stuttgart: Kohlhammer.Google Scholar
  9. Cohen, Hermann. 1888. Jubiläums-Betrachtungen. Philosophische Monatshefte 24: 257–291.Google Scholar
  10. Darrigol, Olivier. 2003. Number and measure: Hermann von Helmholtz at the crossroads of mathematics, physics, and psychology. Studies in History and Philosophy of Science 34: 515–573.CrossRefGoogle Scholar
  11. Dedekind, Richard. 1872. Stetigkeit und irrationale Zahlen. Braunschweig: Vieweg. English edition in Dedekind (1901): 1–27.Google Scholar
  12. Dedekind, Richard. 1888. Was sind und was sollen die Zahlen? Braunschweig: Vieweg. English edition in Dedekind (1901): 29–115.Google Scholar
  13. Dedekind, Richard. 1901. Essays on the theory of numbers. Trans. Wooster Woodruff Beman. Chicago: Open Court.Google Scholar
  14. Diez, José Antonio. 1997. Hundred years of numbers: An historical introduction to measurement theory 1887–1990. Part 1: The formation period. Two lines of research: Axiomatics and real morphisms, scales and invariance. Studies in History and Philosophy of Science 21: 167–181.CrossRefGoogle Scholar
  15. DiSalle, Robert. 1993. Helmholtz’s empiricist philosophy of mathematics: Between laws of perception and laws of nature. In Hermann von Helmholtz and the foundations of nineteenth-century science, ed. David Cahan, 498–521. Berkeley: The University of California Press.Google Scholar
  16. DiSalle, Robert. 2006. Kant, Helmholtz, and the meaning of empiricism. In The Kantian legacy in nineteenth-century science, ed. Michael Friedman and Alfred Nordmann, 123–139. Cambridge, MA: The MIT Press.Google Scholar
  17. du Bois-Reymond, Paul. 1882. Die allgemeine Functionentheorie. Vol. 1: Metaphysik und Theorie der mathematischen Grundbegriffe: Grösse, Grenze, Argument und Function. Tübingen: Laupp.Google Scholar
  18. Dummett, Michael. 1991. Frege: Philosophy of mathematics. Cambridge: Harvard University Press.Google Scholar
  19. Elsas, Adolf. 1886. Über die Psychophysik: Physikalische und erkenntnisstheoretische Betrachtungen. Marburg: Elwert.Google Scholar
  20. Erdmann, Benno. 1877. Die Axiome der Geometrie: Eine philosophische Untersuchung der Riemann-Helmholtz’schen Raumtheorie. Leipzig: Voss.Google Scholar
  21. Ferrari, Massimo. 2009. Le forme della conoscenza scientifica: Cohen e Helmholtz. In Unità della ragione e modi dell’esperienza: Hermann Cohen e il neokantismo, ed. Gian Paolo Cammarota, 77–96. Soveria Mannelli: Rubettino.Google Scholar
  22. Ferreirós, José. 1999. Labyrinth of thought: A history of set theory and its role in modern mathematics. Basel: Birkhäuser.CrossRefGoogle Scholar
  23. Frege, Gottlob. 1884. Die Grundlagen der Arithmetik: Eine logisch mathematische Untersuchung über den Begriff der Zahl. Breslau: Koebner.Google Scholar
  24. Frege, Gottlob. 1893/1966. Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet. Olms: Hildesheim.Google Scholar
  25. Friedman, Michael. 1997. Helmholtz’s Zeichentheorie and Schlick’s Allgemeine Erkenntnislehre: Early logical empiricism and its nineteenth-century background. Philosophical Topics 25: 19–50.CrossRefGoogle Scholar
  26. Friedman, Michael. 1992. Kant and the exact sciences. Cambridge, MA: Harvard University Press.Google Scholar
  27. Gray, Jeremy J. 2008. Plato’s ghost: The modernist transformation of mathematics. Princeton: Princeton University Press.Google Scholar
  28. Hamilton, William Rowan. 1835. Theory of conjugate functions, or algebraic couples; with a preliminary and elementary essay on algebra as the science of pure time. Dublin: Hardy.Google Scholar
  29. Hatfield, Gary. 1990. The natural and the normative: Theories of spatial perception from Kant to Helmholtz. Cambridge, MA: The MIT Press.Google Scholar
  30. Heidelberger, Michael. 1993. Fechner’s impact for measurement theory. Behavioral and Brain Sciences 16: 146–148.CrossRefGoogle Scholar
  31. Heidelberger, Michael. 1994. Helmholtz’ Erkenntnis- und Wissenschaftstheorie im Kontext der Philosophie und Naturwissenschaft des 19. Jahrhunderts. In Universalgenie Helmholtz: Rückblick nach 100 Jahren, ed. Lorenz Krüger, 168–185. Berlin: Akademie Verlag.Google Scholar
  32. Heis, Jeremy. 2011. Ernst Cassirer’s neo-Kantian philosophy of geometry. British Journal for the History of Philosophy 19: 759–794.CrossRefGoogle Scholar
  33. Helmholtz, Hermann von. 1855. Über das Sehen des Menschen. In Vorträge und Reden, vol. 1, 5th ed, 85–118. Braunschweig: Vieweg, 1903.Google Scholar
  34. Helmholtz, Hermann von. 1862. Über das Verhältnis der Naturwissenschaften zur Gesammtheit der Wissenschaften. In Vorträge und Reden, vol. 1, 5th ed, 157–185. Braunschweig: Vieweg, 1903.Google Scholar
  35. Helmholtz, Hermann von. 1876. The origin and meaning of geometrical sxioms. Mind 1: 301–321.CrossRefGoogle Scholar
  36. Helmholtz, Hermann von. 1878a. Die Tatsachen in der Wahrnehmung. In Helmholtz (1921): 109–152.Google Scholar
  37. Helmholtz, Hermann von. 1878b. The origin and meaning of geometrical axioms. Part 2. Mind 3: 212–225.Google Scholar
  38. Helmholtz, Hermann von. 1887. Zählen und Messen, erkenntnistheoretisch betrachtet. In Philosophische Aufsätze: Eduard Zeller zu seinem fünfzigjährigen Doctor-Jubiläum gewidmet, ed. Vischer, Friedrich Theodor, 70–97. Leipzig: Fues. Repr. in Helmholtz (1921): 70–97.Google Scholar
  39. Helmholtz, Hermann von. 1903. Vorlesungen über theoretische Physik. Vol. 1.1: Einleitung zu den Vorlesungen über theoretische Physik, ed. Arthur König and Carl Runge. Leipzig: Barth.Google Scholar
  40. Helmholtz, Hermann von. 1921. Schriften zur Erkenntnistheorie, ed. Paul Hertz and Moritz Schlick. Berlin: Springer. English edition: Helmholtz, Hermann von. 1977. Epistemological writings (trans: Lowe, Malcom F., ed. Robert S. Cohen and Yehuda Elkana). Dordrecht: Reidel.Google Scholar
  41. Hölder, Otto. 1901. Die Axiome der Quantität und die Lehre vom Mass. Berichten der mathematisch-physischen Classe der Königl. Sächs. Gesellschaft der Wissenschaften zu Leipzig 53: 1–64.Google Scholar
  42. Hölder, Otto. 1924. Die mathematische Methode: Logisch erkenntnistheoretische Untersuchungen im Gebiete der Mathematik, Mechanik und Physik. Berlin: Springer.CrossRefGoogle Scholar
  43. Husserl, Edmund. (1891/1970). Husserliana. Vol. 12: Philosophie der Arithmetik: Psychologische und logische Untersuchungen, mit ergänzenden Texten (1890–1901), ed. Lothar Eley. Dordrecht: Springer. English edition: Husserl, Edmund. 2003. Edmund Husserl: Collected Works. Vol. 10: Philosophy of arithmetic: Psychological and logical investigations with supplementary texts from 1887–1991 (trans: Willard, Dallas). Dordrecht: Springer.Google Scholar
  44. Hyder, David. 2006. Kant, Helmholtz and the determinacy of physical theory. In Interactions: Mathematics, physics and philosophy, 1860–1930, ed. Vincent F. Hendricks, Klaus Frovin Jørgensen, Jesper Lützen, and Stig Andur Pedersen, 1–44. Dordrecht: Springer.CrossRefGoogle Scholar
  45. Hyder, David. 2009. The determinate world: Kant and Helmholtz on the physical meaning of geometry. Berlin: De Gruyter.CrossRefGoogle Scholar
  46. Kant, Immanuel. 1787. Critik der reinen Vernunft. 2nd ed. Riga: Hartknoch. Repr. in Akademie-Ausgabe. Berlin: Reimer, 3. English edition: Kant, Immanuel. 1998. Critique of Pure Reason (trans: Guyer, Paul and Wood, Allen W.). Cambridge: Cambridge University Press.Google Scholar
  47. Köhnke, Klaus Christian. 1986. Entstehung und Aufstieg des Neukantianismus: Die deutsche Universitätsphilosophie zwischen Idealismus und Positivismus. Suhrkamp: Frankfurt am Main.Google Scholar
  48. Krantz, David. H., R. Duncan Luce, Patrick Suppes, and Amos Tversky. 1971. Foundations of measurement. Vol. 1: Additive and polynomial representations. New York: Academic Press.Google Scholar
  49. Krause, Albrecht. 1878. Kant und Helmholtz über den Ursprung und die Bedeutung der Raumanschauung und der geometrischen Axiome. Schauenburg: Lahr.Google Scholar
  50. Kronecker, Leopold. 1887. Über den Zahlbegriff. In Philosophische Aufsätze: Eduard Zeller zu seinem fünfzigjährigen Doctor-Jubiläum gewidmet, ed. Vischer, Friedrich Theodor, 261–274. Leipzig: Fues.Google Scholar
  51. Land, Jan Pieter Nicolaas. 1877. Kant’s space and modern mathematics. Mind 2: 38–46.Google Scholar
  52. Michell, Joel. 1993. The origins of the representational theory of measurement: Helmholtz, Hölder, and Russell. Studies in History and Philosophy of Science 24: 185–206.CrossRefGoogle Scholar
  53. Newton, Isaac. 1728. Universal arithmetick: or, A treatise of arithmetical composition and resolution, written in Latin by Sir Isaac Newton, translated by the late Mr. Ralphson, and revised and corrected by Mr. Cunn. London: Senex.Google Scholar
  54. Patton, Lydia. 2009. Signs, toy models, and the a priori: From Helmholtz to Wittgenstein. Studies in History and Philosophy of Science 40: 281–289.CrossRefGoogle Scholar
  55. Poincaré, Henri. 1902. La science et l’hypothèse. Paris: Flammarion.Google Scholar
  56. Potter, Michael. 2000. Reason’s nearest kin: Philosophies of arithmetic from Kant to Carnap. Oxford: Oxford University Press.Google Scholar
  57. Pulte, Helmut. 2006. The space between Helmholtz and Einstein: Moritz Schlick on spatial intuition and the foundations of geometry. In Interactions: mathematics, physics and philosophy, 1860–1930, ed. Vincent F. Hendricks, Klaus Frovin Jørgensen, Jesper Lützen, and Stig Andur Pedersen, 185–206. Dordrecht: Springer.CrossRefGoogle Scholar
  58. Reck, Erich. 2003. Dedekind’s structuralism: An interpretation and partial defense. Synthese 137: 369–419.CrossRefGoogle Scholar
  59. Reck, Erich. 2013. Frege, Dedekind, and the origins of logicism. History and Philosophy of Logic 34: 242–265.CrossRefGoogle Scholar
  60. Riehl, Alois. 1925. Der philosophische Kritizismus und seine Bedeutung für die positive Wissenschaft. Vol. 2: Die sinnlichen und logischen Grundlagen der Erkenntnis, 2nd ed. Leipzig: Engelmann.Google Scholar
  61. Russell, Bertrand. 1903. The principles of mathematics. Cambridge: Cambridge University Press.Google Scholar
  62. Ryckman, Thomas A. 2005. The reign of relativity: Philosophy in physics 1915–1925. New York: Oxford University Press.CrossRefGoogle Scholar
  63. Schiemann, Gregor. 2009. Hermann von Helmholtz’s mechanism: The loss of certainty. A study on the transition from classical to modern philosophy of nature. Trans. Cynthia Klohr. Dordrecht: Springer.Google Scholar
  64. Tait, William W. 1996. Frege versus Cantor and Dedekind: On the concept of number. In Frege: Importance and legacy, ed. Matthias Schirn, 70–113. Berlin: De Gruyter.Google Scholar
  65. Wolff, Christian. 1716. Mathematisches Lexicon. Leipzig: Gleditsch.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francesca Biagioli
    • 1
  1. 1.ZukunftskollegUniversity of KonstanzKonstanzGermany

Personalised recommendations