# Outer Bounds for the Parametric Controllable Solution Set with Linear Shape

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9553)

## Abstract

We consider linear algebraic equations, where the elements of the matrix and of the right-hand side vector are linear functions of interval parameters, and their parametric AE-solution sets, which are defined by universal and existential quantifiers for the parameters. We present how some sufficient conditions for a parametric AE-solution set to have linear boundary can be exploited for obtaining sharp outer bounds of that parametric AE-solution set. For a parametric controllable solution set having linear boundary we present a numerical method for outer interval enclosure of the solution set. The new method has better properties than some other methods available so far.

## Keywords

Interval linear systems Parameter dependencies AE-solution set Controllable solution set Solution enclosure Iteration method

## References

1. 1.
Sainz, M.A., Armengol, J., Calm, R., Herrero, P., Jorba, L., Vehi, J.: Modal Interval Analysis: New Tools for Numerical Information. Lecture Notes in Mathematics, vol. 2091. Springer, Switzerland (2014)
2. 2.
Kaucher, E.: Interval analysis in the extended interval space IR. Computing, Suppl. 2, 33–49 (1980). http://www.math.bas.bg/~epopova/Kaucher-80-CS_33-49.pdf
3. 3.
Neumaier, A., Pownuk, A.: Linear systems with large uncertainties, with applications to truss structures. Reliable Comput. 13, 149–172 (2007)
4. 4.
Popova, E.D.: Explicit description of $$AE$$-solution sets for parametric linear systems. SIAM J. Matrix Anal. Appl. 33, 1172–1189 (2012)
5. 5.
Popova, E.D.: Improved enclosure for some parametric solution sets with linear shape. Comput. Math. Appl. 68(9), 994–1005 (2014)
6. 6.
Popova, E.D., Hladík, M.: Outer enclosures to the parametric $$AE$$-solution set. Soft Comput. 17, 1403–1414 (2013)
7. 7.
Popova, E.D., Krämer, W.: Characterization of $$AE$$-solution sets to a class of parametric linear systems. C. R. Acad. Bulgare Sci. 64(3), 325–332 (2011)
8. 8.
Popova, E.D., Ullrich, C.: Directed interval arithmetic in Mathematica: implementation and applications. Technical report 96-3, Universität Basel (1996). http://www.math.bas.bg/~epopova/papers/tr96-3.pdf
9. 9.
Sharaya, I.A.: Boundary intervals method for visualization of polyhedral solution sets. Comput. Technol. 20(1), 75–103 (2015). (in Russian)
10. 10.
Shary, S.P.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliable Comput. 8(5), 321–418 (2002)
11. 11.
Zimmer, M.: Software zur hocheffizienten Loesung von Intervallgleichungssystemen mit C-XSC, Ph.D. thesis, Bergische Universität Wuppertal (2013)Google Scholar

© Springer International Publishing Switzerland 2016