A Web System for Managing and Monitoring Smart Environments

  • Daniel Zafra
  • Javier Medina
  • Luis Martinez
  • Chris Nugent
  • Macarena Espinilla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9656)

Abstract

Smart environments have the ability to record information about the behavior of the people by means of their interactions with the objects within an environment. This kind of environments are providing solutions to address some of the problems associated with the growing size and ageing of the population by means of the recognition of activities, monitoring activities of daily living and adapting the environment. In this contribution, a Web system for managing and monitoring smart environments is introduced as an useful tool to activity recognition. The Web system has the advantages to process the information, accessible services and analytic capabilities. Furthermore, a case study monitored by the proposed Web System is illustrated in order to show its performance, usefulness and effectiveness.

Keywords

Smart environments Behavioral detection Monitoring smart environments Managing smart environments Sensor-based activity recognition 

Notes

Acknowledgements

This contribution has been supported by research projects: UJA2014/06/14 and CEATIC-2013-001.

References

  1. 1.
    Smith, G., Della Sala, S., Logie, R.H., Maylor, E.A.: Prospective and retrospective memory in normal aging and ementia: a questionnaire study. Memory 8, 311–321 (2000)CrossRefGoogle Scholar
  2. 2.
    Alzheimer’s society. What is dementia? (2013). http://www.alzheimers.org.uk/site/scripts/documents_info.php?documentID=106
  3. 3.
    Von Strauss, E.: Aging and the occurrence of dementia: findings from a population-based cohort with a large sample of nonagenarians. Arch. Neurol. 56(5), 587–592 (1999)CrossRefGoogle Scholar
  4. 4.
    Holder, L.B., Cook, D.J.: Automated activity-aware prompting for activity initiation. Gerontechnology 11(4), 534–544 (2013)CrossRefGoogle Scholar
  5. 5.
    Feuz, K.D., Cook, D.J., Rosasco, C., Robertson, K., Schmitter-Edgecombe, M.: Automated detection of activity transitions for prompting. IEEE Trans. Hum. Mach. Syst. 45(5), 575–585 (2014)CrossRefGoogle Scholar
  6. 6.
    Das, B., Cook, D.J., Schmitter-Edgecombe, M., Seelye, A.M.: Puck: an automated prompting system for smart environments: toward achieving automated prompting-challenges involved. Pers. Ubiquit. Comput. 16(7), 859–873 (2012)CrossRefGoogle Scholar
  7. 7.
    Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mobile Comput. 5(4), 277–298 (2009)CrossRefGoogle Scholar
  8. 8.
    Chen, L., Hoey, J., Nugent, C., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 790–808 (2012)CrossRefGoogle Scholar
  9. 9.
    Synnott, J., Chen, L., Nugent, C.D., Moore, G.: Flexible and customizable visualization of data generated within intelligent environments. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5819–5822, August 2012Google Scholar
  10. 10.
    Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Commun. 8(4), 10–17 (2001)CrossRefGoogle Scholar
  11. 11.
    Varshney, U.: Pervasive healthcare and wireless health monitoring. Mobile Netw. Appl. 12(2–3), 113–127 (2007)CrossRefGoogle Scholar
  12. 12.
    Emmanouilidis, C., Koutsiamanis, R.-A., Tasidou, A.: Mobile guides: taxonomy of architectures, context awareness, technologies and applications. J. Netw. Comput. Appl. 36(1), 103–125 (2013)CrossRefGoogle Scholar
  13. 13.
    Makris, P., Skoutas, D.N., Skianis, C.: A survey on context-aware mobile and wireless networking: on networking and computing environments’ integration. IEEE Commun. Surv. Tuts. 15(1), 362–386 (2013)CrossRefGoogle Scholar
  14. 14.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tuts. 16(1), 414–454 (2014)CrossRefGoogle Scholar
  15. 15.
    Alam, M.M., Hamida, E.B.: Surveying wearable human assistive technology for life and safety critical applications: standards, challenges and opportunities. Sensors 14(5), 9153–9209 (2014). (Switzerland)CrossRefGoogle Scholar
  16. 16.
    Van Hoof, J., Wouters, E.J.M., Marston, H.R., Vanrumste, B., Overdiep, R.A.: Ambient assisted living and care in The Netherlands: the voice of the user. Int. J. Ambient Comput. Intell. 3(4), 25–40 (2011)CrossRefGoogle Scholar
  17. 17.
    Gu, T., Wang, L., Wu, Z., Tao, X., Lu, J.: A pattern mining approach to sensor-based human activity recognition. IEEE Trans. Knowl. Data Eng. 23(9), 1359–1372 (2011)CrossRefGoogle Scholar
  18. 18.
    Li, C., Lin, M., Yang, L.T., Ding, C.: Integrating the enriched feature with machine learning algorithms for human movement and fall detection. J. Supercomput. 67(3), 854–865 (2014)CrossRefGoogle Scholar
  19. 19.
    Martin, L.A., Pelaez, V.M., Gonzalez, R., Campos, A., Lobato, V.: Environmental user-preference learning for smart homes: an autonomous approach. J. Ambient. Intell. Smart. Environ. 2(3), 327–342 (2010)Google Scholar
  20. 20.
    Chen, L., Nugent, C.: Ontology-based activity recognition in intelligent pervasive environments. Int. J. Web Inf. Syst. 5(4), 410–430 (2009)CrossRefGoogle Scholar
  21. 21.
    Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recognition in smart homes. IEEE Trans. Knowl. Data Eng. 24(6), 961–974 (2012)CrossRefGoogle Scholar
  22. 22.
    Shah, M., Big data, the internet of things (2015). arXiv preprint arXiv:1503.07092
  23. 23.
    Maryvonne, M., Bédard, Y., Brisebois, A., Pouliot, J., Marchand, P., Brodeur, J.: Modeling multi-dimensional spatio-temporal data warehouses in a context of evolving specifications. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 34(4), 142–147 (2002)Google Scholar
  24. 24.
    Zaslavsky, A.B., Perera, C., Georgakopoulos, D.: Sensing as a service and big data (2013). CoRR, abs/1301.0159Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniel Zafra
    • 1
  • Javier Medina
    • 1
  • Luis Martinez
    • 1
  • Chris Nugent
    • 2
  • Macarena Espinilla
    • 1
  1. 1.Department of Computer ScienceUniversity of JaénJaénSpain
  2. 2.School of Computing and MathematicsUniversity of UlsterJordanstownUK

Personalised recommendations