Advertisement

Uncertainty in 1D and 3D Models of a Fiber Stimulated by an External Electrode

  • Wanda Krassowska NeuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9656)

Abstract

One-dimensional (1D) cable model is used to study electrical excitation of nerves and muscle fibers, and to aid in the design of electrical therapies. However, approximations inherent in the cable model limit its validity. More realistic three-dimensional (3D) fiber models have been advocated but they require long computational times. This study investigates whether better accuracy of 3D models is worth the cost by computing the probability p that the difference between outputs from 3D and 1D models could have arisen from uncertainties in parameter values. The results are summarized in contour maps of probability p in the space of fiber-electrode distances and stimulus durations. The cable model is considered valid where \(p>0.05\). This region of validity depends on uncertainties in the parameters. In particular, the uncertainties must exceed 0.05 (0.02) of the nominal parameter values for the cable model to be valid in the regions where retinal (cochlear) implants operate.

Keywords

Electric potential Stimulation Passive fiber Cable model Uncertainty 

References

  1. 1.
    de Balthasar, C., Patel, S., Roy, A., Freda, R., Greenwald, S., Horsager, A., Mahadevappa, M., Yanai, D., McMahon, M.J., Humayun, M.S., Greenberg, R.J., Weiland, J.D., Fine, I.: Factors affecting perceptual thresholds in epiretinal prostheses. Invest. Ophthalmol. Vis. Sci. 49, 2303–2314 (2008)CrossRefGoogle Scholar
  2. 2.
    Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris Jr., F.C., Zirpe, M., Natschlger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., Boustani, S.E., Destexhe, A.: Simulation of networks of spiking neurons: a review of tools and strategies. Comput. Neurosci. 23, 349–398 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chatterjee, M., Kulkarni, A.M.: Sensitivity to pulse phase duration in cochlear implant listeners: effects of stimulation mode. J. Acoust. Soc. Am. 136, 829–840 (2014)CrossRefGoogle Scholar
  4. 4.
    Clark, J., Plonsey, R.: A mathematical evaluation of the core conductor model. Biophys. J. 6, 95–112 (1966)CrossRefGoogle Scholar
  5. 5.
    Cranford, J.P., Kim, B.J., Krassowska Neu, W.: Asymptotic model of electrical stimulation of nerve fibers. Med. Biol. Eng. Comput. 50, 243–251 (2012)Google Scholar
  6. 6.
    Eiber, C.D., Lovell, N.H., Suaning, G.J.: Attaining higher resolution visual prosthetics: a review of the factors and limitations. J. Neural Eng. 10, 1–17 (2013). article 011002CrossRefGoogle Scholar
  7. 7.
    Greenberg, R.J., Velte, T.J., Humayun, M.S., Scarlatis, G.N., de Juan Jr., E.: A computational model of electrical stimulation of the retinal ganglion cell. IEEE Trans. Biomed. Eng. 46, 505–514 (1999)CrossRefGoogle Scholar
  8. 8.
    Hatsushika, S., Shepherd, R., Tong, Y., Clark, G., Funasaka, S.: Dimensions of the scala tympani in the human and cat with reference to cochlear implants. Ann. Otol. Rhinol. Laryngol. 99, 871–876 (1990)CrossRefGoogle Scholar
  9. 9.
    Hodgkin, A.L., Rushton, W.A.H.: The electrical constants of a crustacean nerve fibre. Proc. Roy. Soc. B 133, 444–479 (1946)CrossRefGoogle Scholar
  10. 10.
    Joucla, S., Gliere, A., Yvert, B.: Current approaches to model extracellular electrical neural microstimulation. Front. Comput. Neurosci. 8, 1–12 (2014). article 13CrossRefGoogle Scholar
  11. 11.
    Kirkwood, B.R., Sterne, J.A.C.: Essential Medical Statistics, 2nd edn. Blackwell Science, Malden (2003)Google Scholar
  12. 12.
    Le Maître, O., Knio, O.: Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Springer, Dordrecht-Heidelberg-London-New York (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Leon, L.J., Hogues, H., Roberge, F.A.: A model study of extracellular stimulation of cardiac cells. IEEE Trans. Biomed. Eng. 40, 1307–1319 (1993)CrossRefGoogle Scholar
  14. 14.
    McNeal, D.R.: Analysis of a model for excitation of myelinated nerve. IEEE Trans. Biomed. Eng. 23, 329–337 (1976)CrossRefGoogle Scholar
  15. 15.
    Meffin, H., Tahayori, B., Grayden, D.B., Burkitt, A.N.: Modeling extracellular electrical stimulation: I. Derivation and interpretation of neurite equations. J. Neural Eng. 9, 1–17 (2012). article 065005CrossRefGoogle Scholar
  16. 16.
    Krassowska Neu, W.: Analytical solution for time-dependent potentials in a fiber stimulated by an external electrode. Med. Biol. Eng. Comput. (accepted)Google Scholar
  17. 17.
    Pickard, W.: A contribution to the electromagnetic theory of the unmyelinated axon. Math. Biosc. 2, 111–121 (1968)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rattay, F.: Analysis of models for external stimulation of axons. IEEE Trans. Biomed. Eng. 33, 974–977 (1986)CrossRefGoogle Scholar
  19. 19.
    Schnabel, V., Struijk, J.J.: Evaluation of the cable model for electrical stimulation of unmyelinated nerve fibers. IEEE Trans. Biomed. Eng. 48, 1027–1033 (2001)CrossRefGoogle Scholar
  20. 20.
    Sekirnjak, C., Hottowy, P., Sher, A., Dabrowski, W., Litke, A.M., Chichilnisky, E.J.: High-resolution electrical stimulation of primate retina for epiretinal implant design. J. Neurosc. 28, 4446–4456 (2008)CrossRefGoogle Scholar
  21. 21.
    Stickler, Y., Martinek, J., Rattay, F.: Modeling needle stimulation of denervated muscle fibers: voltage-distance relations and fiber polarization effects. IEEE Trans. Biomed. Eng. 56, 2396–2403 (2009)CrossRefGoogle Scholar
  22. 22.
    Taylor, J.R.: An Introduction to Error Analysis. University Science Books, Mill Valley, CA (1982)Google Scholar
  23. 23.
    Yu, H., Liu, X., Zheng, C., Wang, Y.: A novel model for excitation of peripheral nerves stimulated by a transverse electric field. Int. J. Wavelets Multiresolut. Inf. Process. 5, 187–196 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA

Personalised recommendations