Tracking a Real Liver Using a Virtual Liver and an Experimental Evaluation with Kinect v2

  • Hiroshi Noborio
  • Kaoru Watanabe
  • Masahiro Yagi
  • Yasuhiro Ida
  • Shigeki Nankaku
  • Katsuhiko Onishi
  • Masanao Koeda
  • Masanori Kon
  • Kosuke Matsui
  • Masaki Kaibori
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9656)

Abstract

In this study, we propose a smart transcription algorithm for translation and/or rotation motions. This algorithm has two phases: calculating the differences between real and virtual 2D depth images, and searching the motion space defined by three translation and three rotation degrees of freedom based on the depth differences. One depth image is captured for a real liver using a Kinect v2 depth camera and another depth image is obtained for a virtual liver (a polyhedron in stereo-lithography (STL) format by z-buffering with a graphics processing unit). The STL data are converted from Digital Imaging and Communication in Medicine (DICOM) data, where the DICOM data are captured from a patient’s liver using magnetic resonance imaging and/or a computed tomography scanner. In this study, we evaluated the motion precision of our proposed algorithm based on several experiments based using a Kinect v2 depth camera.

Keywords

Depth image Graphics processing unit Parallel processing Randomized steepest descent method Z-buffering 

Notes

Acknowledgments

This study was supported partly by 2014 Grants-in-Aid for Scientific Research (No. 26289069) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. Further support was provided by the 2014 Cooperation Research Fund from the Graduate School at Osaka Electro-Communication University.

References

  1. 1.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  2. 2.
    Zhang, Z.: Iterative point matching for registration of free-form surfaces. J. Comput. Vis. 13(2), 119–152 (1994)CrossRefGoogle Scholar
  3. 3.
    Granger, S., Pennec, X.: Multi-scale EM-ICP: a fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Liu, Y.: Automatic registration of overlapping 3D point clouds using closest points. J. Image Vis. Comput. 24(7), 762–781 (2006)CrossRefGoogle Scholar
  5. 5.
    Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. J. Image Vis. Comput. 25, 578–596 (2007)CrossRefGoogle Scholar
  6. 6.
    Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL): In: IEEE International Conference on Robotics and Automation, pp. 1–4 (2011)Google Scholar
  7. 7.
    Wu, Y.F., Wang, W., Lu, K.Q., Wei, Y.D., Chen, Z.C.: A new method for registration of 3D point sets with low overlapping ratios. In: 13th CIRP Conference on Computer Aided Tolerancing, pp. 202–206 (2015)Google Scholar
  8. 8.
    Noborio, H., Watanabe, K., Yagi, M., Ida, Y., Onishi, K., Koeda, M., Nankaku, S., Matsui, K., Kon, M., Kaibori, M.: Image-based initial position/orientation adjustment system between real and virtual livers. Jurnal Teknologi, Med. Eng. 77(6), 41–45 (2015). Penerbit UTM PressGoogle Scholar
  9. 9.
    Noborio, H., Onishi, K., Koeda, M., Mizushino, K., Yagi, M., Kaibori, M., Kwon, M.: Motion transcription algorithm by matching corresponding depth image and Z-buffer. In: 10th Anniversary Asian Conference on Computer Aided Surgery, pp. 60–61. Kyusyu University, Japan, June 2014Google Scholar
  10. 10.
    Watanabe, K., Yagi, M., Ota, K., Onishi, K., Koeda, M., Nankaku, S., Noborio, H., Kon, M., Matsui, K., Kaibori, M.: Parameter identification of depth-depth-matching algorithm for liver following. Jurnal Teknologi, Med. Eng. 77(6), 35–39 (2015). Penerbit UTM PressGoogle Scholar
  11. 11.
    Watanabe, K., Yagi, M., Shintani, A., Nankaku, S., Onishi, K., Koeda, M., Noborio, H., Kon, M., Matsui, K., Kaibori, M.: A new 2D depth-depth matching algorithm whose translation and rotation freedoms are separated. In: International Conference on Intelligent Informatics and Biomedical Sciences, Okinawa Japan, pp. 271–278, November 2015Google Scholar
  12. 12.
    Noborio, H., Watanabe, K., Yagi, M., Ida, Y., Nankaku, S., Onishi, K., Koeda, H., Kon, M., Matsui, K., Kaibori, M.: Experimental results of 2D depth–depth matching algorithm based on depth camera Kinect v1. J. Bioinform. Neurosci. 1(1), 38–44 (2015). ISSN: 2188-8116Google Scholar
  13. 13.
    Koeda, M., Tsukushi, A., Noborio, H., Onishi, K., Mizushino, K., Kunii, T., Watanabe, K., Kaibori, M., Matsui, K., Kwon, M.: Depth camera calibration and knife tip position estimation for liver surgery support system. In: 17th International Conference on Human-Computer Interaction, Los Angeles, CA, USA, pp. 496–502 August 2015Google Scholar
  14. 14.
    Doi, M., Yano, D., Koeda, M., Noborio, H., Onishi, K., Kayaki, M., Mizushino, K., Matsui, K., Kaibori, M.: Knife tip position estimation using multiple markers for liver surgery support. In: 6th International Conference on Advanced Mechatronics (ICAM 2015), pp. 74–75. Nishiwaseda Campus of Waseda University, Tokyo Japan, 1A2-08, 5–8 December 2015Google Scholar
  15. 15.
    Noborio, H., Kunii, T., Mizushino, K.: GPU-based shortest distance algorithm for liver surgery navigation. In: 10th Anniversary Asian Conference on Computer Aided Surgery, pp. 42–43. Kyusyu University, Japan, June 2014Google Scholar
  16. 16.
    Noborio, H., Kunii, T., Mizushino, K.: Comparison of GPU-based and CPU-based algorithms for determining the minimum distance between a CUSA scalpel and blood vessels. In: The 7th International Conference on Bioinformatics Models, Methods and Algorithms, Roma, Italy (to appear)Google Scholar
  17. 17.
    Onishi, K., Noborio, H., Koeda, M., Watanabe, K., Mizushino, K., Kunii, T., Kaibori, M., Matsui, K., Kwon, M.: Virtual liver surgical simulator by using Z-buffer for object deformation. In: 17th International Conference on Human-Computer Interaction (HCII 2015), Los Angeles, CA, USA, pp. 345–351 August 2015Google Scholar
  18. 18.
    Noborio, H., Onishi, K., Koeda, M., Mizushino, K., Kunii, T., Kaibori, M., Kon, M., Chen, Y.-W.: Fast surgical algorithm for cutting with liver standard triangulation language format using Z-Buffers in graphics processing unit. In: Fujie, M. (ed.) Computer Aided Surgery, pp. 127–140. Springer, Japan (2016). doi: 10.1007/978-4-431-55810-1_11 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hiroshi Noborio
    • 1
  • Kaoru Watanabe
    • 1
  • Masahiro Yagi
    • 1
  • Yasuhiro Ida
    • 1
  • Shigeki Nankaku
    • 1
  • Katsuhiko Onishi
    • 1
  • Masanao Koeda
    • 2
  • Masanori Kon
    • 2
  • Kosuke Matsui
    • 2
  • Masaki Kaibori
    • 2
  1. 1.Department of Computer ScienceOsaka Electro-Communication UniversityOsakaJapan
  2. 2.Medical SchoolKansai Medical UniversityOsakaJapan

Personalised recommendations