Advertisement

Automatic Generation of Semantic Data for Event-Related Medical Guidelines

  • Yuling Fan
  • Rui Qiao
  • Jinguang Gu
  • Zhisheng Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9544)

Abstract

Medical Guidelines pay an important role in medical decision making systems. Medical guidelines are usually involved with event-related actions or procedure. However, little research has been done on how event-related medical guidelines can be converted into its semantic representation such as RDF/OWL data. This paper proposes an approach of automatic generation of semantic data for event-related medical guidelines. This generation is achieved by using the logic programming language Prolog with the support of medical ontologies such as SNOMED CT. We will report the experiments with the automatic generation of the semantic data for event-related Chinese medical guidelines, and show the relevant results.

Keywords

Medical events Medical guidelines Semantic data RDF Prolog 

References

  1. 1.
    Yali, Z., Shuqi, C.: The research of international clinical practice guidelines. Clin. Educ. Gen. Pract. 3, 176–178 (2004). (赵亚利, 崔树起. 国际临床实践指南的研究进展[J]. 全科医学临床与教育, 2004, 2 (3): 176-178)Google Scholar
  2. 2.
    Wielemarks, J., Huang, Z., van der Lourens, M.: SWI-Prolog and the web. J. Theor. Pract. Logic Program. 8(1), 1–30 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Xiaohong, B., Weihu, Z., Shiqin, W.: Overview of the characteristics of Prolog. J. Yanan Univ. (Nat. Sci. Ed.) 18(1), 23–26 (1999). (白晓虹,张威虎, 王世勤. Prolog语言特点综述[J] 延安大学学报(自然科学版, 1999, 18 (1): 23-26)Google Scholar
  4. 4.
    Fan, Y., Gu, J., Huang, Z.: Event processing and automatic generation of its semantic data in Chinese medical guidelines. China Digital Medicine. In press. (范玉玲, 顾进广, 黄智生. 中文医学指南的事件处理及其语义数据自动生成[J]. 中国数字医学)Google Scholar
  5. 5.
    Chinese Medical Association, Chinese Hospital Pharmacy Specialized Committee Management Institute, China Pharmaceutical Specialty Hospital Committee. clinical application guiding principles of antimicrobial drugs[EB] (中华医学会, 中华医院管理学会药事管理专业委员会, 中国药学会医院学专业委员. 抗菌药物应用指导原则[EB])Google Scholar
  6. 6.
    Fan, Y., Gu, J., Huang, Z.: Event-oriented semantic data generation for medical guidelines. In: Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., Pan, J.Z. (eds.) CSWS 2014. CCIS, vol. 480, pp. 123–133. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Jinguang, G., Qing, H., Zhisheng, H.: Semantic transformation and generation of the knowledge of antimicrobial guidelines. China Digital Med. 8(4), 20–24 (2013). (顾进广, 胡青, 黄智生. 抗菌药物指南知识的语义转换与生成[J]. 中国数字医学, 2013, 8 (4) : 20-24)Google Scholar
  8. 8.
    Bjorne, J., Heimonen, J., Ginter, F., et al.: Extracting complex biological events with rich graph-based feature sets. In: BioNLP 2009 Proceedings of the Workshop on BioNLP: Shared Task, Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 10–18 (2009)Google Scholar
  9. 9.
    Hakenberg, J., Solt, I., TIKK, D., et al.: Molecular event extraction from Link Grammar parse trees. In: BioNLP 2009 Proceedings of the Workshop on BioNLP: Shared Task, Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 86–94 (2009)Google Scholar
  10. 10.
    Sarafraz, F., Eales, J., Mohammadi, R., et al.: Biomedical event detection using rules, conditional random fields and parse tree distances. In: BioNLP 2009 Proceedings of the Workshop on BioNLP: Shared Task, Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 115–118 (2009)Google Scholar
  11. 11.
    Jingsong, L., Zhisheng, H.: Biomedical semantic technology. Zhejiang University Press, Hangzhou (2012). (李劲松, 黄智生. 生物医学语义技术[M] 杭州 : 浙江大学出版社, 2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yuling Fan
    • 1
    • 2
  • Rui Qiao
    • 1
    • 2
  • Jinguang Gu
    • 1
    • 2
  • Zhisheng Huang
    • 3
  1. 1.College of Computer Science and TechnologyWuhan University of Science and TechnologyWuhanChina
  2. 2.Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial SystemWuhanChina
  3. 3.Departments of Computer ScienceVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations