Advertisement

Modeling and Querying Spatial Data Warehouses on the Semantic Web

  • Nurefşan Gür
  • Katja Hose
  • Torben Bach Pedersen
  • Esteban Zimányi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9544)

Abstract

The Semantic Web (SW) has drawn the attention of data enthusiasts, and also inspired the exploitation and design of multidimensional data warehouses, in an unconventional way. Traditional data warehouses (DW) operate over static data. However multidimensional (MD) data modeling approach can be dynamically extended by defining both the schema and instances of MD data as RDF graphs. The importance and applicability of MD data warehouses over RDF is widely studied yet none of the works support a spatially enhanced MD model on the SW. Spatial support in DWs is a desirable feature for enhanced analysis, since adding encoded spatial information of the data allows to query with spatial functions. In this paper we propose to empower the spatial dimension of data warehouses by adding spatial data types and topological relationships to the existing QB4OLAP vocabulary, which already supports the representation of the constructs of the MD models in RDF. With QB4SOLAP, spatial constructs of the MD models can be also published in RDF, which allows to implement spatial and metric analysis on spatial members along with OLAP operations. In our contribution, we describe a set of spatial OLAP (SOLAP) operations, demonstrate a spatially extended metamodel as, QB4SOLAP, and apply it on a use case scenario. Finally, we show how these SOLAP queries can be expressed in SPARQL.

Keywords

Resource Description Framework Spatial Object Topological Relation Spatial Level Spatial Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This research was partially funded by The Erasmus Mundus Joint Doctorate in “Information Technologies for Business Intelligence – Doctoral College (IT4BI-DC)”.

References

  1. 1.
    Abelló, A., Romero, O., Pedersen, T.B., Berlanga Llavori, R., Nebot, V., Aramburu, M., Simitsis, A.: Using semantic web technologies for exploratory OLAP: a survey. TKDE 99, 571–588 (2014)Google Scholar
  2. 2.
    Andersen, A.B., Gür, N., Hose, K., Jakobsen, K.A., Pedersen, T.B.: Publishing danish agricultural government data as semantic web data. In: Supnithi, T., Yamaguchi, T., Pan, J.Z., Wuwongse, V., Buranarach, M. (eds.) JIST 2014. LNCS, vol. 8943, pp. 178–186. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    Battle, R., Kolas, D.: GeoSPARQL: enabling a geospatial SW. Seman. Web 3(4), 355–370 (2012)Google Scholar
  4. 4.
    Bimonte, S., Johany, F., Lardon, S.: A first framework for mutually enhancing chorem and spatial OLAP systems. In: DATA (2015)Google Scholar
  5. 5.
    Ciferri, C., Gómez, L., Schneider, M., Vaisman, A.A., Zimányi, E.: Cube algebra: a generic user-centric model and query language for OLAP cubes. IJDWM 9(2), 39–65 (2013)Google Scholar
  6. 6.
    Cyganiak, R., Reynolds, D., Tennison, J.: The RDF Data Cube Vocabulary. W3C (2014)Google Scholar
  7. 7.
    Deb Nath, R.P., Hose, K., Pedersen, T.B.: Towards a programmable semantic extract-transform-load framework for semantic data warehouses. In: DOLAP (2015)Google Scholar
  8. 8.
    Diamantini, C., Potena, D.: Semantic enrichment of strategic datacubes. In: DOLAP (2008)Google Scholar
  9. 9.
    Etcheverry, L., Vaisman, A., Zimányi, E.: Modeling and querying data warehouses on the semantic web using QB4OLAP. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 45–56. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Gómez, L.I., Gómez, S.A., Vaisman, A.A.: A generic data model and query language for spatiotemporal OLAP cube analysis. In: EDBT (2012)Google Scholar
  11. 11.
    Han, J., Stefanovic, N., Koperski, K.: Selective materialization: an efficient method for spatial data cube construction. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, pp. 144–158. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Kämpgen, B., O’Riain, S., Harth, A.: Interacting with statistical linked data via OLAP operations. In: Simperl, E., Norton, B., Mladenic, D., Valle, E.D., Fundulaki, I., Passant, A., Troncy, R. (eds.) ESWC 2012. LNCS, vol. 7540, pp. 87–101. Springer, Heidelberg (2012)Google Scholar
  13. 13.
    Koubarakis, M., Karpathiotakis, M., Kyzirakos, K., Nikolaou, C., Sioutis, M.: Data models and query languages for linked geospatial data. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 290–328. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a semantic geospatial DBMS. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 295–311. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Le Grange, J.J., Lehmann, J., Athanasiou, S., Rojas, A.G., et al.: The GeoKnow generator: managing geospatial data in the linked data web. In: Linking Geospatial Data (2014)Google Scholar
  16. 16.
    Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  17. 17.
    Nebot, V., Berlanga, R., Pérez, J.M., Aramburu, M.J., Pedersen, T.B.: Multidimensional integrated ontologies: a framework for designing semantic data warehouses. In: Spaccapietra, S., Zimányi, E., Song, I.-Y. (eds.) Journal on Data Semantics XIII. LNCS, vol. 5530, pp. 1–36. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Revesz, P.: Introduction to Databases: From Biological to Spatio-Temporal. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Stadler, C., Lehmann, J., Hffner, K., Auer, S.: Linkedgeodata: a core for a web of spatial open data. Semant. Web 3(4), 333–354 (2012)Google Scholar
  20. 20.
    Vaisman, A.A., Zimányi, E.: A multidimensional model representing continuous fields in spatial data warehouses. In: ACM SIGSPATIAL (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nurefşan Gür
    • 1
  • Katja Hose
    • 1
  • Torben Bach Pedersen
    • 1
  • Esteban Zimányi
    • 2
  1. 1.Aalborg UniversityAalborgDenmark
  2. 2.Université Libre de BruxellesBrusselsBelgium

Personalised recommendations