Diffraction Radiation Phenomena: Physical Analysis and Applications

Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 91)


The chapter is devoted to the problems of analysis and applied usage of the diffraction radiation phenomena, which are exploited in antennas and generators for millimeter and submillimeter waves. The diffraction radiation occurs when surface waves of open waveguides or eigenfields of charged-particle beams are transformed by periodic gratings into radiated fields. Main properties of the diffraction radiation phenomena have been studied using the given-current approximation and rigorous methods taking into account actual size of devices exploiting the phenomena. The algorithm of experimental synthesis of planar diffraction antennas with record-breaking low side lobes level has been developed and applied to design a real-world device.


Directional Pattern Main Lobe Dielectric Waveguide Phase Distortion Spatial Harmonic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amitay, N., Galindo, V., Wu, C.P.: Theory and Analysis of Phased Array Antennas. Wiley, New York (1972)Google Scholar
  2. 2.
    Shestopalov, V.P., Lytvynenko, L.M., Masalov, S.A., Sologub, V.G.: Wave Diffraction by Gratings. Kharkov State University Press, Kharkov (1973). (in Russian)Google Scholar
  3. 3.
    Petit, R. (ed.): Electromagnetic Theory of Gratings. Springer, New York (1980)Google Scholar
  4. 4.
    Chandezon, J., Maystre, D., Raoult, G.: A new theoretical method for diffraction gratings and its numerical application. J. Opt. (Paris) 11(4), 235–241 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    Li, L., Granet, G., Plumey, J.P., Chandezon, J.: Some topics in extending the C-method to multilayer-coated gratings of different profiles. Pure Appl. Opt. 5(2), 141–156 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Sirenko, Y.K., Velychko, L.G.: Diffraction grating profile reconstruction: simple approaches to solving applied problems. Electromagnetics 19(2), 211–221 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sirenko, Y.K., Velychko, L.G., Karacuha, E.: Synthesis of perfectly conducting gratings with an arbitrary profile of slits. Inverse Prob. 15(2), 541–550 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Neviere, M., Popov, E.: Light Propagation in Periodic Media: Differential Theory and Design. Marcel Dekker, New York (2003)Google Scholar
  9. 9.
    Sirenko, Y.K., Strom, S., Yashina, N.P.: Modeling and Analysis of Transient Processes in Open Resonant Structures: New Methods and Techniques. Springer, New York (2007)zbMATHGoogle Scholar
  10. 10.
    Sirenko, K.Y., Sirenko, Y.K., Yashina, N.P.: Modeling and analysis of transients in periodic gratings. I. Fully absorbing boundaries for 2-D open problems. J. Opt. Soc. Am. A 27(3), 532–543 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Sirenko, K.Y., Sirenko, Y.K., Yashina, N.P.: Modeling and analysis of transients in periodic gratings. II. Resonant wave scattering. J. Opt. Soc. Am. A 27(3), 544–552 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Sirenko, Y.K., Strom, S. (eds.): Modern Theory of Gratings. Resonant Scattering: Analysis Techniques and Phenomena. Springer, New York (2010)Google Scholar
  13. 13.
    Granet, G., Melezhik, P., Sirenko, K., Yashina, N.: Time-and-frequency domains approach to data processing in multiwavelength optical scatterometry of dielectric gratings. J. Opt. Soc. Am. A 30(3), 427–436 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Lee, J.W., Eom, H.J., Park, K.H., Chun, W.J.: TM-wave radiation from grooves in a dielectric-covered ground plane. IEEE Trans. Antennas Propag. 49(1), 104–105 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Melezhik, P.N., Sidorenko, Y.B, Provalov, S.A., Andrenko, S.D., Shilo, S.A.: Planar antenna with diffraction radiation for radar complex of millimeter band. Radioelectron. Commun. Syst. 53(5), 233–240 (2010)CrossRefGoogle Scholar
  16. 16.
    Yevdokymov, A.P., Kryzhanovskiy, V.V., Sirenko, Y.K.: A planar extremely high frequency diffraction radiation antenna. Elektromagnitnye Volny I Elektronnye Sistemy 16(6), 53–61 (2011). (in Russian)Google Scholar
  17. 17.
    Yevdokymov, A.P.: Diffraction radiation antennas. Fizicheskie Osnovy Priborostroeniya 2(1), 108–125 (2013). (in Russian)Google Scholar
  18. 18.
    Sautbekov, S., Sirenko, K., Sirenko, Y., Yevdokimov, A.: Diffraction radiation phenomena: physical analysis and applications. IEEE Antennas Propag. Mag. 57(5), 73–93 (2015)CrossRefGoogle Scholar
  19. 19.
    Tretyakov, O.A., Tretyakova, S.S., Shestopalov, V.P.: Electromagnetic wave radiation by electron beam mowing over diffraction grating. Radiotehnika I Elektronika 10(7), 1233–1243 (1965). (in Russian)Google Scholar
  20. 20.
    Shestopalov, V.P.: Physical Foundation of the Millimeter and Sub Millimeter Waves Technique. Vol. I. Open structures. VSP Books Inc., Utrecht, Netherland & Tokyo, Japan (1997)Google Scholar
  21. 21.
    Sirenko, Y.K., Velychko, L.G.: The features of resonant scattering of plane inhomogeneous waves by gratings: model problem for relativistic diffraction electronics. Telecommun. Radio Eng. 55(3), 33–39 (2001)Google Scholar
  22. 22.
    Kesar, A.S., Hess, M., Korbly, S.E., Temkin, R.J.: Time- and frequency-domain models for Smith-Purcell radiation from a two-dimensional charge moving above a finite length grating. Phys. Rev. E 71, 016501-1–016501-9 (2005)Google Scholar
  23. 23.
    Zhang, P., Zhang, Ya., Hu, M., Liu, W., Zhou, J., Liu, S.: Diffraction radiation of a sub-wavelength hole array with dielectric medium loading. J. Phys. D: Appl. Phys. 45, 145303-1–145303-8 (2012)Google Scholar
  24. 24.
    Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  25. 25.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (2000)zbMATHGoogle Scholar
  26. 26.
    Rao, S.M. (ed.): Time Domain Electromagnetics. Academic Press, San Diego (1999)Google Scholar
  27. 27.
    Rothwell, E.J., Cloud, M.J.: Electromagnetics. CRC Press, New York (2001)CrossRefGoogle Scholar
  28. 28.
    Masalov, S.A.: On a possibility of using an echelette in the diffraction radiation generators. Ukrainskiy Fizicheskiy Zhurnal 25(4), 570–574 (1980). (in Russian)Google Scholar
  29. 29.
    Velychko, L.G., Sirenko, Y.K., Velychko, O.S.: Time-domain analysis of open resonators. Analytical grounds. Prog. Electromagnet. Res. 61, 1–26 (2006)CrossRefGoogle Scholar
  30. 30.
    Chen, H., Chen, M.: Flipping photons backward: reversed Cherenkov radiation. Mater. Today 14(1-2), 34–41 (2011)CrossRefGoogle Scholar
  31. 31.
    Park, S.-H., Park, J.-I., Kim, K.-T.: Motion compensation for squint mode spotlight SAR imaging using efficient 2D interpolation. Prog. Electromagnet. Res. 128, 503–518 (2012)CrossRefGoogle Scholar
  32. 32.
    Yevdokymov, A.P., Kryzhanovskiy, V.V.: Antenna for 8 mm range airfield control radar set. Elektromagnitnye Volny I Elektronnye Sistemy 13(6), 46–52 (2008). (in Russian)Google Scholar
  33. 33.
    Kuhn, R.: Mikrowellen Antennen. Veb Verlag Technik, Berlin (1964). (in German)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.L.N. Gumilyov Eurasian National UniversityAstanaRepublic of Kazakhstan
  2. 2.King Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.O.Ya. Usikov Institute for Radiophysics and ElectronicsNational Academy of SciencesKharkivUkraine

Personalised recommendations