Skip to main content

High-Power Short Pulses Compression: Analysis and Modeling

  • Chapter
  • First Online:
Electromagnetic Waves in Complex Systems

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 91))

  • 1099 Accesses

Abstract

The chapter discusses practically realizable algorithms of model synthesis of direct-flow compressors built on the basis of rectangular, circular or coaxial waveguides. Resonance and distributed switches have been designed to ensure effective energy accumulation and release into output waveguides or free space. The authors dwell on peculiarities of radiation of high-power short pulses by simple monopole antennas with coaxial feeding waveguides. They also design a novel phased antenna array, whose each radiating element is an active compressor. Particular attention is given to the study of such physical processes in compressors as energy accumulation, switching from the accumulation mode into the mode of energy release, and radiation of short high-power pulses into free space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sirenko, Y.K., Strom, S., Yashina, N.P.: Modeling and Analysis of Transient Processes in Open Resonant Structures. New Methods and Techniques. Springer, New York (2007)

    MATH  Google Scholar 

  2. Kuzmitchev, I.K., Melezhyk, P.M., Pazynin, V.L., Sirenko, K.Y., Sirenko, Y.K., Shafalyuk, O.S., Velychko, L.G.: Model synthesis of energy compressors. Radiofizika I Elektronika 13(2), 166–172 (2008)

    Google Scholar 

  3. Sirenko, K.Y., Sirenko, Y.K.: Exact ‘absorbing’ conditions in the initial boundary value problems of the theory of open waveguide resonators. Comput. Math. Math. Phys. 45(3), 490–506 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Sirenko, Y.K., Strom, S. (eds): Modern Theory of Gratings. Resonant Scattering: Analysis Techniques and Phenomena. Springer, New York (2010)

    Google Scholar 

  5. Sirenko, K., Pazynin, V., Sirenko, Y., Bagci, H.: An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures. Prog. Electromagn. Res. 111, 331–364 (2011)

    Article  Google Scholar 

  6. Shafalyuk, O., Sirenko, Y., Smith, P.: Simulation and analysis of transient processes in open axially-symmetrical structures: Method of exact absorbing boundary conditions. In: Zhurbenko V. (ed.): Electromagnetic Waves, pp. 99–116. InTech, Rijeka (2011)

    Google Scholar 

  7. Kravchenko, V.F., Sirenko, Y.K., Sirenko, K.Y.: Electromagnetic Wave Transformation and Radiation by the Open Resonant Structures. Modelling and Analysis of Transient and Steady-State Processes. Fizmathlit, Moscow (2011). (in Russian)

    Google Scholar 

  8. Shafalyuk, O., Smith, P., Velychko, L.: Rigorous substantiation of the method of exact absorbing conditions in time-domain analysis of open electrodynamic structures. Prog. Electromagn. Res. B 41, 231–249 (2012)

    Article  Google Scholar 

  9. Taflove, A., Hagness, S.C.: Computational Electrodynamics: the Finite-Difference Time-Domain Method. Artech House, Boston (2000)

    MATH  Google Scholar 

  10. Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York (2002)

    MATH  Google Scholar 

  11. Liu, M., Sirenko, K., Bagci, H.: An efficient discontinuous Galerkin finite-element method for highly accurate solution of Maxwell equations. IEEE Trans. Antennas Propag. 60(8), 3992–3998 (2012)

    Google Scholar 

  12. Sirenko, Y.K., Velychko, L.G., Erden, F.: Time-domain and frequency-domain methods combined in the study of open resonance structures of complex geometry. Prog. Electromagn. Res. 44, 57–79 (2004)

    Article  Google Scholar 

  13. Velychko, L.G., Sirenko, Y.K., Velychko, O.S.: Time-domain analysis of open resonators. Analytical grounds. Prog. Electromagn. Res. 61, 1–26 (2006)

    Article  Google Scholar 

  14. Velychko, L.G., Sirenko, Y.K.: Controlled changes in spectra of open quasi-optical resonators. Prog. Electromagn. Res. B 16, 85–105 (2009)

    Article  Google Scholar 

  15. Sirenko, K., Pazynin, V., Sirenko, Y., Bagci, H.: Compression and radiation of high-power short radio pulses. I. Energy accumulation in direct-flow waveguide compressors. Prog. Electromagn. Res. 116, 239–270 (2011)

    Article  Google Scholar 

  16. Sirenko, K., Pazynin, V., Sirenko, Y., Bagci, H.: Compression and radiation of high-power short radio pulses. II. A novel antenna array design with combined compressor/radiator elements. Prog. Electromagn. Res. 116, 271–296 (2011)

    Article  Google Scholar 

  17. Tantawi, S.G., Ruth, R.D., Vlieks, A.E., Zolotorev, M.: Active high-power RF pulse compression using optically switched resonant delay lines. IEEE Trans. Microw. Theory Tech. 45(8), 1486–1492 (1997)

    Article  ADS  Google Scholar 

  18. Artemenko, S.N., Avgustinovich, V.A., Kaminsky, V.L., Chumerin, P.Y., Yushkov, Y.G.: Experemental investigation of a 25-mw microwave (3-cm range) compressor prototype. Tech. Phys. 45(12), 1608–1611 (2000)

    Article  Google Scholar 

  19. Vikharev, A.L., Gorbachev, A.M., Ivanov, O.A., Isaev, V.A., Kuzikov, S.V., Kolysko, A.L., Movshevich, B.Z., Hirshfield, J., Gold, S.H.: Active Bregg compressor of 3-cm wavelength microwave pulses. Radiophys. Quantum Electron. 51(7), 539–555 (2008)

    Article  ADS  Google Scholar 

  20. Samsonov, S.V., Phelps, A.D.R., Bratman, V.L., Denisov, G.G., Cross, A.W., Ronald, K., He, W., Yin, H.: Compression of frequency-modulated pulses using helically corrugated waveguides and its potential for generating multigigawatt RF radiation. Phys. Rev. Lett. 92(11), 118301-1–118301-4 (2004)

    Google Scholar 

  21. Sirenko, Y.K., Yashina, N.P. Time domain theory of open waveguide resonators: canonical problems and a generalized matrix technique. Radio Sci. 38(2), VIC 26-1–VIC 26-12 (2003)

    Google Scholar 

  22. Sirenko, K.Y.: Transport operators in the axially-symmetrical problems of the electrodynamics of pulsed waves. Elektromagnitnye Volny I Elektronnye Sistemy, 11(11), 15–26 (2006). (in Russian)

    Google Scholar 

  23. Kravchenko, V.F., Sirenko, K.Y., Sirenko, Y.K.: Transport operators and exact absorbing conditions in the plane problems of the electrodynamics of pulsed waves for compact open resonators with the waveguide feeder line. Elektromagnitnye Volny I Elektronnye Sistemy, 14(1), 4–19 (2009). (in Russian)

    Google Scholar 

  24. Pazynin, V.L.: Compression of frequency-modulated electromagnetic pulses in sections of regular waveguides. Telecommun. Radio Eng. 71(20), 1833–1857 (2012)

    Article  Google Scholar 

  25. Karmel, P.R., Colef, G.D., Camisa, R.L.: Introduction to Electromagnetic and Microwave Engineering. Wiley, New York (1998)

    Google Scholar 

  26. Sirenko, K.Y., Pazynin, V.L.: Axially-symmetrical radiators of pulsed and monochromatic TM 0n - and TM 0n -waves. Uspehi Sovremennoy Radioelektroniki 4, 52–69 (2006). (in Russian)

    Google Scholar 

  27. Bossart, R., Brown, P., Mourier, J., Syratchev, I.V., Tanner, L.: High-power microwave pulse compression of klystrons by phase-modulation if high-Q storage cavities. CERN CLIC-Notes, no.592, (2004)

    Google Scholar 

  28. Vikharev, A.L., Ivanov, O.A., Gorbachev, A.M., Kuzikov, S.V., Isaev, V.A., Koldanov, V.A., Lobaev, M.A., Hirshfield, J.L., LaPointe, M.A., Nezhevenko, O.A., Gold, S.H., Kinkead, A.K.: Active compression of RF pulses. In: Hirshfield J.L., Petelin M.I. (eds): Quasi-Optical Control of Intense Microwave Transmission, pp. 199–218. Springer, Netherlands (2005)

    Google Scholar 

  29. Yushkov, Y.G., Badulin, N.N., Batsula, A.P., Mel’nikov, A.I., Novikov, S.A., Razin, S.V., Shoshin, E.L.: A nanosecond pulse-compression microwave radar. Telecommun. Radio Eng. 54(2), 92–98 (2000)

    Google Scholar 

  30. Schamiloglu, E.: High power microwave sources and applications. In: 2004 IEEE MTT-S Digest, pp. 1001–1004 (2004)

    Google Scholar 

  31. Benford, J.: Space applications of high-power microwaves. IEEE Trans. Plasma Sci. 36(3), 569–581 (2008)

    Article  ADS  Google Scholar 

  32. Gaponov-Grekhov, A.V., Granatstein, V.L.: Applications of High-Power Microwaves. Artech House, Boston (1994)

    Google Scholar 

  33. Bluhm, H.: Pulsed Power Systems. Principles and Applications. Springer, Berlin (2006)

    Google Scholar 

  34. Pazynin, V.L., Sirenko, K.Y.: Transformation of TM 0n - and TM 0n -waves by axially-symmetrical waveguide units. Slot resonances. Elektromagnitnye Volny I Elektronnye Sistemy, 10(10), 21–26 (2005). (in Russian)

    Google Scholar 

  35. DeLoach, B.C.: Radial-line coaxial filters in the microwave region. IEEE Trans. Microw. Theory Tech. 11(1), 50–55 (1963)

    Article  ADS  Google Scholar 

  36. Sirenko, K.Y.: Slot resonances in axially symmetric radiators of pulse-modulated and monochromatic TM 0n -modes. Telecommun. Radio Eng. 66(1), 9–21 (2007)

    Article  Google Scholar 

  37. Chernobrovkin, R.E., Ivanchenko, I.V., Korolev, A.M., Popenko, N.A., Sirenko, K.Y.: The novel microwave stop-band filter. Active and Passiv. Electron. Compon. 2008(745368) (2008)

    Google Scholar 

  38. Shestopalov, V.P., Kirilenko, A.A., Rud’, L.A.: Resonance Wave Scattering. Vol.2. Waveguide Discontinuities. Naukova Dumka, Kiev (1986). (in Russian)

    Google Scholar 

  39. Velychko, L.G., Sirenko, Y.K., Vinogradova, E.D.: Analytical grounds for modern theory of two-dimensionally periodic gratings. In: Kishk A. (ed): Solutions and Applications of Scattering, Propagation, Radiation and Emission of Electromagnetic Waves, pp. 123–158. InTech, Rijeka (2012)

    Google Scholar 

  40. Andreev, A.D., Farr, E.G., Schamiloglu, E.: A simplified theory of microwave pulse compression. Circuit and Electromagnetic System Design Notes, no. 57, (2008)

    Google Scholar 

  41. Avgustinovich, V.A., Artemenko, S.N., D’yachenko, V.F., Kaminskii, V.L., Novikov, S.A., Yushkov, Yu.G.: A study of the switching of the microwave compressor switch in a circular waveguide. Instrum. Exp. Tech. 52(4), 547–550 (2009)

    Google Scholar 

  42. Faillon, G., Durand, A.-J.: Microwave pulse generator incorporating a pulse compressor. U.S. Patent 6768266 (2004)

    Google Scholar 

  43. Artemenko, S.N.: Formation of nanosecond RF pulses in an autogenerator by resonance compression of microwave energy. Radiophys. Quantum Electron. 41(7), 616–624 (1998)

    Article  ADS  Google Scholar 

  44. Farr, E.G., Bowen, L.H., Prather, W.D., Baum, C.E.: Microwave pulse compression experiments at low and high power. Circuit and Electromagnetic System Design Notes, no.63 (2010)

    Google Scholar 

  45. Benford, J.: Space applications of high-power microwaves. IEEE Trans. Plasma Sci. 36(3), 569–581 (2008)

    Article  ADS  Google Scholar 

  46. Giri, D.V., Tesche, F.M., Baum, C.E.: An overview of high-power electromagnetics (HPEM) radiating and conducting systems. Circuit and Electromagnetic System Design Notes, no.50 (2006)

    Google Scholar 

  47. Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, New York (1982)

    Google Scholar 

  48. Amitay, N., Galindo, V., Wu, C.P.: Theory and Analysis of Phased Array Antennas. Wiley, New York (1972)

    Google Scholar 

  49. Ramp, H.O., Wingrove E.R.: Principles of pulse compression. IRE Trans. Mil. Electron., MIL-5(2), 109–116 (1961)

    Google Scholar 

  50. Thor R.C.: A large time-bandwidth product pulse-compression technique. IRE Trans. Mil. Electron. MIL-6(2), 169–173 (1962)

    Google Scholar 

  51. Bongianni, W.L., Harrington, J.B.: Ultrawide bandwidth pulse compression in YIG. Proc. IEEE 54(8), 1074–1075 (1966)

    Article  Google Scholar 

  52. Bromley, R.A., Callan, B.E.: Use of a waveguide dispersive line in an f.m. pulse-compression system. Proc. IEEE 114(9), 1213–1218 (1967)

    Google Scholar 

  53. Gökgör, H.S., Minakovic, B.: Circular TE 01 periodic waveguide as delay line for pulse compression. Electron. Lett. 7(20), 607–608 (1971)

    Article  Google Scholar 

  54. Shirman, Y.D.: Signal Resolution and Compression. Sovetskoe Radio, Moscow (1974). (in Russian)

    Google Scholar 

  55. Thirios, E.C., Kaklamani, D.I., Uzunoglu, N.K.: Pulse compression using a periodically dielectric loaded dispersive waveguide. Prog. Electromag. Res. 48, 301–333 (2004)

    Article  Google Scholar 

  56. McStravick, M., Samsonov, S.V., Ronald, K., Mishakin, S.V., He, W., Denisov, G.G., Whyte, C.G., Bratman, V.L., Cross, A.W., Yong, A.R., Maclnnes, P., Robertson, C.W., Phelps, A.D.R.: Experimental results on microwave pulse compression using helically corrugated waveguide. J. Appl. Phys. 108(5), 054908-1–054908-4 (2010)

    Google Scholar 

  57. Burt, G., Samsonov, S.V., Bratman, V.L., Denisov, G.G., Phelps, A.D.R., Ronald, K., He, W., Young, A.R., Cross, A.W., Konoplev, I.V.: Microwave pulse compression using a helically corrugated waveguide. IEEE Trans. Plasma Sci. 33(2), 661–667 (2005)

    Article  ADS  Google Scholar 

  58. Bratman, V.L., Denisov, G.G., Samsonov, S.V., Cross, A.W., Ronald, K., Phelps, A.D.R.: A technique of obtaining multigigawatt peak power through compression of microwave pulses radiated by a relativistic BWT in a helically corrugated waveguide. Izvestiya Vuzov. Radiofizika, 50(1), 40–53 (2007). (in Russian)

    Google Scholar 

  59. Pazynin, V.L.: On rigorous simulation of FM pulses compression in the hollow regular waveguides. Radiofizika I Elektronika, 17(3), 30–34 (2012). (in Russian)

    Google Scholar 

  60. Levin, L.: Theory of Waveguides: Techniques for Solution of Waveguide Problems. Newnes-Butterworths, London (1975)

    Google Scholar 

  61. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego, London (2000)

    MATH  Google Scholar 

  62. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  63. Marple, S.L.: Digital Spectral Analysis with Applications. Prentice-Hall, New Jersey (1987)

    Google Scholar 

  64. Southworth, G.C.: Principles and Application of Waveguide Transmission. D. Van Nostrand Co., New York (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostyantyn Sirenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pazynin, V., Sirenko, K., Sirenko, Y. (2016). High-Power Short Pulses Compression: Analysis and Modeling. In: Sirenko, Y., Velychko, L. (eds) Electromagnetic Waves in Complex Systems. Springer Series on Atomic, Optical, and Plasma Physics, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-31631-4_6

Download citation

Publish with us

Policies and ethics