Advertisement

Counting Distance and Szeged (on Distance) Polynomials in Dodecahedron Nano-assemblies

  • Sorana D. Bolboacă
  • Lorentz Jäntschi
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)

Abstract

Six dodecahedron nano-assemblies, complexes with 5-, 6-, 12-, 15-, 24-, and 25-dodecahedron units, were constructed by HyperChem software and investigated. Two polynomials, namely, the counting distance polynomial and counting Szeged (on distance) polynomial, graph invariants encoding important properties of the investigated nano-assemblies, have been calculated; the counting polynomial roots were calculated for each investigated nano-assembly. Distinct patterns of polynomial roots were obtained for each of these polynomials, with similarities among dodecahedron congeners.

Keywords

Helium Atom Polynomial Root Minimal Fragment Fragment Matrix Maximal Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. An Y-P, Yang C-L, Wang M-S, Ma X-G, Wang D-H (2009) First-principles study of electronic transport properties of dodecahedrane C20H20 and its endohedral complex Li@C20H20. J Phys Chem C 113(35):15756–15760CrossRefGoogle Scholar
  2. Astakhov AM, Stepanov RS, Babushkin AY (1998) On the detonation parameters of octanitrocubane. Combust Explo Shock 34(1):85–87CrossRefGoogle Scholar
  3. Banfalvia G (2014) Dodecahedrane minibead polymers. RSC Adv 4:3003–3008CrossRefGoogle Scholar
  4. Bolboacă S, Jäntschi L (2007) How good the characteristic polynomial can be for correlations? Int J Mol Sci 8(4):335–345CrossRefGoogle Scholar
  5. Chen Z, Jiao H, Moran D, Hirsch A, Thiel W, von Ragué SP (2003) Structures and stabilities of endo- and exohedral dodecahedrane complexes (X@C20H20 and XC20H20, X = H+, H, N, P, C, Si, O+, S+). J Phys Chem A 107(12):2075–2079CrossRefGoogle Scholar
  6. Cross RJ, Saunders M, Prinzbach H (1999) Putting helium inside dodecahedrane. Org Lett 1(9):1479–1481CrossRefGoogle Scholar
  7. Devillers J, Balaban AT (eds) (2000) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, pp 96–97Google Scholar
  8. Diudea MV, Minailiuc OM, Katona G, Gutman I (1997) Szeged matrices and related numbers. MATCH Commun Math Comput Chem 35:129–143Google Scholar
  9. Dixon DA, Deerfield D (1981) The electronic structure of dodecahedrane and the nature of the central cavity. Chem Phys Lett 78(1):161–164CrossRefGoogle Scholar
  10. Eaton PE, Cole TW (1964a) Cubane. J Am Chem Soc 86(15):3157–3158CrossRefGoogle Scholar
  11. Eaton PE, Cole TW (1964b) The cubane system. J Am Chem Soc 86(5):962–964CrossRefGoogle Scholar
  12. Eremenko LT, Nesterenko DA (1997) Energetics of decomposition of polynitrocubanes (Analytical prediction). Chem Phys Rep 16:1675–1683Google Scholar
  13. Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):344–345CrossRefGoogle Scholar
  14. Friedlander P (1964) Chapter XIV: Platon als Atomphysiker. In: Friedlander P (ed) Platon, Vol I. Walter de Gruyter & Co, Berlin, pp 260–275Google Scholar
  15. Hopf H (2000) Classics in hydrocarbon chemistry. Wiley-VCH, WeinheimGoogle Scholar
  16. Hosoya H (2013) Distance polynomial and the related counting polynomials. Croat Chem Acta 86(4):443–451CrossRefGoogle Scholar
  17. Jäntschi L (2000) CF matrices (§4.7) In: Jäntschi L (ed) Prediction of physical, chemical and biological properties using mathematical descriptors (in Romanian). PhD Thesis in Chemistry (PhD Advisor: Prof. Dr. Mircea V. DIUDEA). Cluj-Napoca, Babeş-Bolyai UniversityGoogle Scholar
  18. Jäntschi L (2007) Characteristic and counting polynomials of nonane isomers. Academic Direct Publishing House (eISBN: 978-973-86211-3-8). Available at: http://ph.academicdirect.org/CCPNI_2007.pdf
  19. Jäntschi L, Bolboacă SD (2009) Counting polynomials on regular iterative structures. Appl Med Inform 24(1–2):67–95Google Scholar
  20. Jäntschi L, Diudea MV (2009) Subgraphs of pair vertices. J Math Chem 45(2):364–371CrossRefGoogle Scholar
  21. Jäntschi L, Bolboacă SD, Furdui CM (2009) Characteristic and counting polynomials: modelling nonane isomers properties. Mol Simul 35(3):220–227CrossRefGoogle Scholar
  22. Jiménez-Vázquez HA, Tamariz J, Cross RJ (2001) Binding energy in and equilibrium constant of formation for the dodecahedrane compounds He@C20H20 and Ne@C20H20. J Phys Chem A 105(8):1315–1319CrossRefGoogle Scholar
  23. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48:23–35CrossRefGoogle Scholar
  24. Liu F-L (2004a) DFT study on a molecule C25H20 with a dodecahedrane cage and a pentaprismane cage sharing the same pentagon. J Mol Struct-Theochem 681(1–3):51–55Google Scholar
  25. Liu F-L (2004b) Theoretical study on the coplanar double-cage dodecahedrane C35H30. Phys Chem Chem Phys 6:906–909CrossRefGoogle Scholar
  26. Liu F-L, Zhao J-X, Xie Y, Dai L-H (2005a) Theoretical study of two C30H20 isomers with a dodecahedrane cage and two pentaprismane cages sharing two pentagons. Int J Quantum Chem 102:275–281CrossRefGoogle Scholar
  27. Liu F-L, Zhai Y-Q, Feng S, Guo W-L (2005b) DFT study on the molecule C40H30: two dodecahedrane cages linked by five carbon–carbon single bonds. J Mol Struct-Theochem 719(1–3):185–189Google Scholar
  28. MacGillivray LR, Atwood JL (1999) Structural classification and general principles for the design of spherical molecular hosts. Angew Chem 38(8):1018–1033CrossRefGoogle Scholar
  29. Maier G, Pfriem S (1978) Tetra-tert-butyltetrahedrane. Angew Chem 17(7):520–521CrossRefGoogle Scholar
  30. Maier G, Neudert J, Wolf O, Pappusch D, Sekiguchi A, Tanaka M, Matsuo T (2002) Tetrakis(trimethylsilyl) tetrahedrane. J Am Chem Soc 124(46):13819–13826CrossRefGoogle Scholar
  31. Moran D, Stahl F, Jemmis ED, Schaefer HF III, von Schleyer PR (2002) Structures, stabilities, and ionization potentials of dodecahedrane endohedral complexes. J Phys Chem A 106(20):5144–5154CrossRefGoogle Scholar
  32. Nemirowski A, Reisenauer HP, Schreiner PR (2006) Tetrahedrane-Dossier of an unknown. Chem Eur J 12:7411–7420CrossRefGoogle Scholar
  33. Pan VY (1997) Solving a polynomial equation: some history and recent progress. SIAM Rev 39:187–220CrossRefGoogle Scholar
  34. Paquette LA, Ternansky RJ, Balogh DW, Kentgen G (1983) Total synthesis of dodecahedrane. J Am Chem Soc 105(16):5446–5450CrossRefGoogle Scholar
  35. Sekiguchi A, Tanaka M (2003) Tetrahedranyllithium: synthesis, characterization, and reactivity. J Am Chem Soc 125(42):12684–12685CrossRefGoogle Scholar
  36. Ternansky RJ, Balogh DW, Paquette LA (1982) Dodecahedrane. J Am Chem Soc 104(16):4503–4504CrossRefGoogle Scholar
  37. Wahl F, Weiler A, Landenberger P, Sackers E, Voss T, Haas A, Lieb M, Hunkler D, Wörth J, Knothe L, Prinzbach H (2006) Towards perfunctionalized dodecahedranes-en route to C20 fullerene. Chem Eur J 12(24):6255–6267CrossRefGoogle Scholar
  38. Xiao H, Zhang J (2002) Theoretical prediction on heats of formation for polyisocyanocubanes. Sci China Ser B 45(1):21–29CrossRefGoogle Scholar
  39. Zhang M-X, Eaton PE, Gilardi R (2000) Hepta- and octanitrocubanes. Angew Chem Int Ed 39(2):401–404CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Agricultural Science and Veterinary Medicine Cluj-NapocaCluj-NapocaRomania
  2. 2.Department of Physics and ChemistryTechnical University of Cluj-NapocaCluj-NapocaRomania
  3. 3.Institute for Doctoral StudiesBabeş-Bolyai UniversityCluj-NapocaRomania
  4. 4.University of Agricultural Science and Veterinary Medicine Cluj-NapocaCluj-NapocaRomania
  5. 5.Department of Medical Informatics and BiostatisticsIuliu Haţieganu University of Medicine and PharmacyCluj-NapocaRomania
  6. 6.Department of ChemistryUniversity of OradeaOradeaRomania

Personalised recommendations