Advertisement

Application of NTRU Using Group Rings to Partial Decryption Technique

  • Takanori Yasuda
  • Hiroaki Anada
  • Kouichi Sakurai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9565)

Abstract

Partial decryption enables a ciphertext to be decrypted partially according to provided secret keys. In this paper, we propose a public key encryption scheme with the functionality of partial decryption. Our strategy is to use the NTRU cryptosystem. Under a design principle of the mathematical structure “group ring”, we extend the original NTRU into group ring NTRU (GR-NTRU). First, we propose a generic framework of our GR-NTRU. Our GR-NTRU allows partial decryption with a single encryption process using a single public key. Besides, when we execute partial decryption under a secret key of GR-NTRU, we need no information to identify each part in a whole ciphertext. Consequently, management of a public key and a corresponding set of secret keys is rather easier than the naive method. Next, we propose a concrete instantiation of our generic GR-NTRU. A multivariate polynomial ring NTRU scheme is obtained by employing a product of different cyclic groups as the basis of the group ring structure. We will show examples of those new variants of NTRU schemes with concrete parameter values, and explain how we can employ them to use the functionality of partial decryption.

Keywords

NTRU Lattice-based cryptography Group ring Partial decryption 

References

  1. 1.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient encryption schemeas. In: Desmedt, G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Berkovits, S.: How to broadcast a secret. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bovdi, A.A.: Group Algebra. Springer Publishing Company, Incorporated (2001)Google Scholar
  6. 6.
    Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Santizable signatures: how to partially delegate control for authenticated data. In: Proceedings of the Special Interest Group on Biometrics and Electronic Signatures BIOSIG 2009, 17-18 September 2009 in Darmstadt, Germany, pp. 117–128 (2009)Google Scholar
  8. 8.
    Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J., Whyte, W.: Hybrid lattice reduction and meet in the middle resistant parameter selection for ntruencryptGoogle Scholar
  9. 9.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Izu, T., Ito, K., Tsuda, H., Abiru, K., Ogura, T.: Privacy-protection technologies for secure utilization of sensor data. Fujitsu Sci. Tech. J. 50(1), 30–33 (2014)Google Scholar
  11. 11.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Santis, A.D., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23–25 May 1994, Montréal, Québec, Canada, pp. 522–533 (1994)Google Scholar
  13. 13.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro, N.: Verifiable predicate encryption and applications to CCA security and anonymous predicate authentication. In: Proceedings 15th International Conference on Practice and Theory in Public Key Cryptography PKC–2012, Darmstadt, Germany, May 21–23 2012, pp. 243–261 (2012)Google Scholar
  15. 15.
    Yasuda, T., Dahan, X., Sakurai, K.: Characterizing NTRU-variants using group ring and evaluating their lattice security. To be appear as an IACR e-print paperGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Takanori Yasuda
    • 1
  • Hiroaki Anada
    • 1
  • Kouichi Sakurai
    • 1
    • 2
  1. 1.Institute of Systems, Information Technologies and NanotechnologiesFukuokaJapan
  2. 2.Department of InformaticsKyushu UniversityFukuokaJapan

Personalised recommendations