Advertisement

Neural Signal Conditioning Circuits

  • Amir ZjajoEmail author
Chapter
  • 1.6k Downloads

Abstract

The increasing density and the miniaturization of the functional blocks in these multi-electrode arrays presents significant circuit design challenge in terms of area, power, and the scalability, reliability and expandability of the recording system. In this chapter, we present a neural signal conditioning circuit for biomedical implantable devices, which includes low-noise signal amplification and band-pass filtering. The circuit is realized in a 65 nm CMOS technology, and consumes less than 1.5 μW. The fully differential low-noise amplifier achieves 40 dB closed loop gain, occupies an area of 0.04 mm2, and has input referred noise of 3.1 μVrms over the operating bandwidth 0.1–20 kHz. The capacitive-attenuation band-pass filter with first-order slopes achieves 65 dB dynamic range , 210 mVrms at 2 % THD and 140 μVrms total integrated output noise.

Keywords

Operational Amplifier Total Harmonic Distortion Input Transistor Neural Recording Output Swing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    IEEE Standards Coordinating Committee, in IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, C95.1-2005, 2006Google Scholar
  2. 2.
    M. Steyaert, W. Sansen, C. Zhongyuan, A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid-State Circuits 22(6), 1163–1168 (1987)CrossRefGoogle Scholar
  3. 3.
    R. Harrison, C. Charles, A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)CrossRefGoogle Scholar
  4. 4.
    M.C. Chae, W. Liu, M. Sivaprakasam, Design optimization for integrated neural recording systems. IEEE J. Solid-State Circuits 43(9), 1931–1939 (2008)CrossRefGoogle Scholar
  5. 5.
    W. Wattanapanitch, M. Fee, R. Sarpeshkar, An energy-efficient micropower neural recording amplifier. IEEE Trans. Biomed. Circuits Syst. 1(2), 136–147 (2007)CrossRefGoogle Scholar
  6. 6.
    C. Qian, J. Parramon, E. Sanchez-Sinencio, A micropower low-noise neural recording front-end circuit for epileptic seizure detection. IEEE J. Solid-State Circuits 46(6), 1329–1405 (2011)CrossRefGoogle Scholar
  7. 7.
    F. Bahmani, E. Sánchez-Sinencio, A highly linear pseudo-differential transconductance, in Proceedings of IEEE European Solid-State Circuits Conference, 2004, pp. 111–114Google Scholar
  8. 8.
    S.K. Arfin, Low power circuits and systems for wireless neural stimulation. PhD thesis, Massachusetts Institute of Technology, 2011Google Scholar
  9. 9.
    G. Nicollini, P. Confalonieri, D. Senderowicz, A fully differential sample-and-hold circuit for high-speed applications. IEEE J. Solid-State Circuits 24(5), 1461–1465 (1989)CrossRefGoogle Scholar
  10. 10.
    K. Gulati, H.-S. Lee, A high-swing CMOS telescopic operational amplifier. IEEE J. Solid-State Circuits 33(12), 2010–2019 (1998)CrossRefGoogle Scholar
  11. 11.
    T.C. Choi, R.T. Kaneshiro, W. Brodersen, P.R. Gray, W.B. Jett, M. Wilcox, High-frequency CMOS switched-capacitor filters for communications application. IEEE J. Solid-State Circuits 18, 652–664 (1983)CrossRefGoogle Scholar
  12. 12.
    K. Bult, G. Geelen, A fast-settling CMOS op amp for SC circuits with 90-dB DC gain. IEEE J. Solid-State Circuits 25(6), 1379–1384 (1990)CrossRefGoogle Scholar
  13. 13.
    R. Harjani, R. Heineke, F. Wang, An integrated low-voltage class AB CMOS OTA. IEEE J. Solid-State Circuits 34(2), 134–142 (1999)CrossRefGoogle Scholar
  14. 14.
    R. Hogervorst, J.H. Huijsing, Design of low-voltage low-power operational amplifier cells (Kluwer Academic Publishers, Dordrecht, 1999)Google Scholar
  15. 15.
    B.K. Ahuja, An improved frequency compensation technique for CMOS operational amplifiers. IEEE J. Solid-State Circuits 18(6), 629–633 (1983)MathSciNetCrossRefGoogle Scholar
  16. 16.
    C.I. de Zeeuw et al., Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neurosci. 12(6), 327–344 (2011)CrossRefGoogle Scholar
  17. 17.
    D. Han et al., A 0.45 V 100-channel neural-recording IC with sub-μW/channel consumption in 0.18 μm CMOS. IEEE Trans. Biomed. Circuits Syst. 7(6), 735–746 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Abdelhalim et al., 64-channel UWB wireless neural vector analyzer SoC with a closed-loop phase synchrony-triggered neurostimulator. IEEE J. Solid-State Circuits 48(10), 2494–2510 (2013)CrossRefGoogle Scholar
  19. 19.
    C.M. Lopez et al., An implantable 455-active-electrode 52-channel CMOS neural probe, in IEEE International Solid-State Circuits Conference, pp. 288–289, 2013Google Scholar
  20. 20.
    K.A. Ng, Y.P. Xu, A multi-channel neural-recording amplifier system with 90 dB CMRR employing CMOS-inverter-based OTAs with CMFB through supply rails in 65 nm CMOS, in IEEE International Solid-State Circuits Conference, pp. 206–207, 2015Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations