Advertisement

On the Hardness of LWE with Binary Error: Revisiting the Hybrid Lattice-Reduction and Meet-in-the-Middle Attack

  • Johannes BuchmannEmail author
  • Florian Göpfert
  • Rachel Player
  • Thomas Wunderer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9646)

Abstract

The security of many cryptographic schemes has been based on special instances of the Learning with Errors (LWE) problem, e.g., Ring-LWE, LWE with binary secret, or LWE with ternary error. However, recent results show that some subclasses are weaker than expected. In this work we show that LWE with binary error, introduced by Micciancio and Peikert, is one such subclass. We achieve this by applying the Howgrave-Graham attack on NTRU, which is a combination of lattice techniques and a Meet-in-the-Middle approach, to this setting. We show that the attack outperforms all other currently existing algorithms for several natural parameter sets. For instance, for the parameter set \(n=256\), \(m=512\), \(q=256\), this attack on LWE with binary error only requires \(2^{85}\) operations, while the previously best attack requires \(2^{117}\) operations. We additionally present a complete and improved analysis of the attack, using analytic techniques. Finally, based on the attack, we give concrete hardness estimations that can be used to select secure parameters for schemes based on LWE with binary error.

Keywords

Learning with errors Lattice-based cryptography Cryptanalysis NTRU Hybrid attack 

Notes

Acknowledgements

Player was supported by an ACE-CSR PhD grant. This work has been co-funded by the DFG as part of project P1 within the CRC 1119 CROSSING. We thank Sean Murphy for useful discussions and comments.

References

  1. 1.
    Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: Algebraic algorithms for LWE problems. In: IACR Cryptology ePrint Archive 2014, p. 1018 (2014)Google Scholar
  2. 2.
    Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Albrecht, M.R., Faugère, J., Fitzpatrick, R., Perret, L.: Lazy modulus switching for the BKW algorithm on LWE. In: Krawczyk [28], pp. 429–445Google Scholar
  4. 4.
    Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 293–310. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology 9(3), 169–203 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Babai, L.: On Lovász’ lattice reduction and the nearest lattice pointproblem. In: Mehlhorn, K. (ed.) STACS 85. LNCS, vol. 182, pp. 13–20. Springer, Berlin (1985)CrossRefGoogle Scholar
  8. 8.
    Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved exponential-time algorithms for inhomogeneous-sis. In: IACR Cryptology ePrint Archive 2014, p. 593 (2014)Google Scholar
  11. 11.
    Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from(standard) LWE. In: Ostrovsky, R. (eds.) FOCS 2011, pp. 97–106, Palm Springs, CA, USA. IEEE Computer Society , 22–25 October 2011Google Scholar
  13. 13.
    Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE with binary error: revisiting the hybridlattice-reduction and meet-in-the-middle attack. Cryptology ePrint Archive, Report 2016/089 (2016). http://eprint.iacr.org/
  14. 14.
    Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part I. LNCS, vol. 8042. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  15. 15.
    Chen, H., Lauter, K.E., Stange, K.E.: Attacks on search RLWE. IACR Cryptology ePrint Archive 2015, p. 971 (2015)Google Scholar
  16. 16.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 173–202. Springer, Heidelberg (2015)Google Scholar
  18. 18.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) [14], pp. 40–56Google Scholar
  19. 19.
    Eisenträger, K., Hallgren, S., Lauter, K.: Weak Instances of PLWE. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  20. 20.
    Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of ring-LWE. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 63–92Google Scholar
  21. 21.
    Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9215. Springer, Berlin (2015)zbMATHGoogle Scholar
  22. 22.
    Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice codes. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 23–42Google Scholar
  24. 24.
    Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kirchner, P., Fouque, P.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 43–62Google Scholar
  28. 28.
    Krawczyk, H. (ed.): PKC 2014. LNCS, vol. 8383. Springer, Heidelberg (2014)zbMATHGoogle Scholar
  29. 29.
    Laine, K., Lauter, K.E.: Key recovery for LWE in polynomial time. IACR Cryptology ePrint Archive 2015, p. 176 (2015)Google Scholar
  30. 30.
    Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) [28], pp. 345–361Google Scholar
  31. 31.
    Li, S.: Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat. 4(1), 66–70 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 43 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) [14], pp. 21–39Google Scholar
  36. 36.
    Micciancio, D., Regev, O.: Lattice-based cryptography. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  37. 37.
    Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. IACR Cryptology ePrint Archive 2015, p. 1123 (2015)Google Scholar
  38. 38.
    Olver, F.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  39. 39.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (eds.) STOC 2009, pp. 333–342, Bethesda, MD, USA. ACM, May 31–June 2, 2009Google Scholar
  40. 40.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93, Baltimore, MD, USA. ACM, 22–24 May 2005Google Scholar
  42. 42.
    Stein, W., et al.: Sage Mathematics Software (Version 6.3). The Sage Development Team (2014). http://www.sagemath.org

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Johannes Buchmann
    • 1
    Email author
  • Florian Göpfert
    • 1
  • Rachel Player
    • 2
  • Thomas Wunderer
    • 1
  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.Information Security GroupRoyal Holloway, University of LondonEghamUK

Personalised recommendations