Advertisement

Attribute-Based Fully Homomorphic Encryption with a Bounded Number of Inputs

  • Michael Clear
  • Ciarán McGoldrick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9646)

Abstract

The only known way to achieve Attribute-based Fully Homomorphic Encryption (ABFHE) is through indistinguishability obfuscation. The best we can do at the moment without obfuscation is Attribute-Based Leveled FHE which allows circuits of an a priori bounded depth to be evaluated. This has been achieved from the Learning with Errors (LWE) assumption. However we know of no other way without obfuscation of constructing a scheme that can evaluate circuits of unbounded depth. In this paper, we present an ABFHE scheme that can evaluate circuits of unbounded depth but with one limitation: there is a bound N on the number of inputs that can be used in a circuit evaluation. The bound N could be thought of as a bound on the number of independent senders. Our scheme allows N to be exponentially large so we can set the parameters so that there is no limitation on the number of inputs in practice. Our construction relies on multi-key FHE and leveled ABFHE, both of which have been realized from LWE, and therefore we obtain a concrete scheme that is secure under LWE.

References

  1. 1.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing STOC 2009, pp. 169 (2009)Google Scholar
  6. 6.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, IEEE Computer Society, pp. 40–49 (2013)Google Scholar
  9. 9.
    Clear, M., McGoldrick, C.: Bootstrappable identity-based fully homomorphic encryption. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 1–19. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Clear, M., McGoldrick, C.: Policy-based non-interactive outsourcing of computation using multikey FHE and CP-ABE. In: Proceedings of the 10th International Conference on Security and Cryptography, SECRYPT 2013 (2013)Google Scholar
  11. 11.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the 44th Symposium on Theory of Computing (STOC 2012), pp. 1219–1234. ACM, New York (2012)Google Scholar
  12. 12.
    Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Computer Science and StatisticsTrinity College DublinDublinIreland

Personalised recommendations