Advertisement

Climate Change over West Africa: Recent Trends and Future Projections

  • Mouhamadou Bamba SyllaEmail author
  • Pinghouinde Michel Nikiema
  • Peter Gibba
  • Ibourahima Kebe
  • Nana Ama Browne Klutse
Chapter

Abstract

The West African climate has evolved in recent decades to respond to elevated anthropogenic greenhouse gas (GHG) forcing. An assessment of its recent trends and future changes is presented here based on various data sources (observations and models), along with an extensive review of recent literature including the latest Intergovernmental Panel on Climate Change report. A gradual warming spatially variable reaching 0.5 °C per decade in recent years is observed. In addition, the Sahel has recovered from the previous drought episodes (i.e., 1970s and 1980s); however, the precipitation amount is not at the level of the pre-drought period. Although these features are common across the different data sources, their magnitudes differ from one source to the other due to a lack of reliable observation systems. Projected climate change indicates continuous and stronger warming (1.5–6.5 °C) and a wider range of precipitation uncertainty (roughly between −30 and 30 %) larger in the Sahel and increasing in the farther future. However, the spatial distribution unveils significant precipitation decrease confined to the westernmost Sahel and becoming greater and more extensive in the high level GHG forcing scenario by the end of the 21st century. This coexists with a substantial increase in both dry spell length and extreme precipitation intensity. West Sahel is thus the most sensitive region to anthropogenic climate change. The rest of West Africa also experiences more intense extremes in future climate but to a lesser extent. It is also reported from other previous studies that the projected rainy season and the growing season will become shorter while the torrid, arid and semi-arid climate conditions will substantially extend. It is thus evident that in a “business as usual” World, most countries in West Africa will have to cope with shorter rainy seasons, generalized torrid, arid and semi-arid conditions, longer dry spells and more intense extreme precipitations. Such conditions can produce significant stresses on agricultural activities, water resources management, ecosystem services and urban areas planning. However, some GHG mitigation (i.e., a mid-level forcing) could help to reduce the stress.

Keywords

Anthropogenic climate change Recent trends Sahel precipitation recovery Projections Uncertainties Extreme events 

References

  1. Abiodun, B. J., Lawal, K. A., Salami, A. T., & Abatan, A. A. (2013). Potential influences of global warming on future climate and extreme events in Nigeria. Regional Environmental Change, 13, 477–491. doi: 10.1007/s10113-012-0381-7.CrossRefGoogle Scholar
  2. Ackerley, D., Booth, B. B. B., Knight, S. H. E., Highwood, E. J., Frame, D. J., Allen, M. R., & Rowell, D. P. (2011). Sensitivity of twentieth-century sahel rainfall to sulfate aerosol and CO2 forcing. Journal of Climate, 24, 499–5014. doi: 10.1175/JCLI-D-11-00019.1.CrossRefGoogle Scholar
  3. Anyamba, A., Small, J. L., Britch, S. C., Tucker, C. J., Pak, E. W., Reynolds, C. A., et al. (2014). Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns. PLoS ONE, 9(3), e92538. doi: 10.1371/journal.pone.0092538.CrossRefGoogle Scholar
  4. Biasutti, M., & Sobel, A. (2009). Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophysical Research Letters, 36(L23), 707. doi: 10.1029/2009GL041303.Google Scholar
  5. Biasutti, M. (2013). Forced Sahel rainfall trends in the CMIP5 archive. Journal of Geophysical Research: Atmospheres, 118, 1613–1623. doi: 10.1002/jgrd.50206.Google Scholar
  6. Boko, M., Niang, I., Nyong, A., Vogel, C., Githeko A, Medany, M., Osman-Elasha, B., Tabo, R., & Yanda, P. (2007). Africa Climate Change 2007: impacts, adaptation and vulnerability. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 433–467). Cambridge, UK: Cambridge University Press.Google Scholar
  7. Carney, L. T., Reinsch, S. S., Lane, P. D., Solberg, O. D., Jansen, L. S., Williams, K. P., et al. (2014). Microbiome analysis of a micro algal mass culture growing in municipal waste water in a prototype OMEGA photobioreactor. Algal Research, 4, 52–61. doi: 10.1016/j.algal.2013.11.006.CrossRefGoogle Scholar
  8. Cook, K. H., & Vizy, E. K. (2012). Impact of climate change on mid-twenty-first century growing seasons in Africa. Climate Dynamics, 39, 2937–2955. doi: 10.1007/s00382-012-1324-1.CrossRefGoogle Scholar
  9. Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52–58. doi: 10.1038/nclimate1633.CrossRefGoogle Scholar
  10. Diallo, I., Sylla, M.B., Giorgi, F., Gaye, A.T., & Camara, M. (2012). Multi-model GCM-RCM ensemble based projections of temperature and precipitation over West Africa for the early 21st century. International Journal of Geophysics, 972896. doi: 10.1155/2012/972896.Google Scholar
  11. Diallo, I., Sylla, M. B., Camara, M., & Gaye, A. T. (2013). Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations. Theoretical and Applied Climatology, 113(1–2), 351–362. doi: 10.1007/s00704-012-0791-y.CrossRefGoogle Scholar
  12. Dong, B. W., & Sutton, R. (2015). Dominant role of greenhouse gas forcing in the recovery of Sahel rainfall. Nature Climate Change, 5, 757–760. doi: 10.1038/nclimate2664.CrossRefGoogle Scholar
  13. Dosio, A., Panitz, H. J. (2015) Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Climate Dynamics. doi: 10.1007/s00382-015-2664-4 (in press).
  14. Dosio, A., Panitz, H. J., Schubert-Frisius, M., & Lüthi, D. (2015). Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: Evaluation over the present climate and analysis of the added value. Climate Dynamics, 44, 2637–2661. doi: 10.1007/s00382-014-2262-x.CrossRefGoogle Scholar
  15. Douglas, I., Alam, K., Maghenda, M., McDonnell, Y., Mclean, L., & Campbell, J. (2008). Unjust waters: Climate change, flooding and the urban poor in Africa. Environment and Urbanisation, 20, 187–205. doi: 10.1177/0956247808089156.CrossRefGoogle Scholar
  16. Druyan, L. M. (2011). Studies of 21st-century precipitation trends over West Africa. International Journal of Climatology, 31(10), 1415–1424. doi: 10.1002/joc.2180.CrossRefGoogle Scholar
  17. Elguindi, N., Grundstein, A., Bernardes, S., Turuncoglu, U., & Feddema, J. (2014). Assessment of CMIP5 global model simulations and climate change projections for the 21st Century using a modified Thornthwaite climate classification. Climatic Change, 122, 523–538. doi: 10.1007/s10584-013-1020-0.CrossRefGoogle Scholar
  18. Fontaine, B., Roucou, P., Gaetani, M., & Marteau, R. (2011). Recent changes in precipitation, ITCZ convection and northern tropical circulation over North Africa (1979–2007). International Journal of Climatology, 31(5), 633–648.CrossRefGoogle Scholar
  19. Gbobaniyi, E., Sarr, A., Sylla, M. B., Diallo, I., Lennard, C., Dosio, A., et al. (2014). Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. International Journal of Climatology, 34(7), 2241–2257. doi: 10.1002/joc.3834.CrossRefGoogle Scholar
  20. Giorgi, F., Jones, C., Asrar, G. (2009). Addressing climate information needs at the regional level. The CORDEX framework. WMO Bulletin, July 2009 issue.Google Scholar
  21. Giorgi, F., Im, E. S., Coppola, E., Diffenbaugh, N. S., Gao, X. J., Mariotti, L., & Shi, Y. (2011). Higher hydroclimatic intensity with global warming. Journal of Climate, 24, 5309–5324. doi: 10.1175/2011JCLI3979.1.CrossRefGoogle Scholar
  22. Giorgi, F., Coppola, E., & Raffaele, F. (2014a). A consistent picture of the hydroclimatic response to global warming from multiple indices: Models and observations. Journal of Geophysical Research: Atmosphere, 119. doi: 10.1002/2014JD022238.Google Scholar
  23. Giorgi, F., Coppola, E., Raffaele, F., Diro, G. T., Fuentes-Franco, R., Giuliani, G., Mamgain, A., Llopart, M. P., Mariotti, L., & Torma, C. (2014b). Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Climatic Change, 125, 39–51. doi: 10.1007/s10584-014-1117-0.Google Scholar
  24. Haarsma, R. J., Selten, F. M., Weber, S. L., & Kliphuis, M. (2005). Sahel rainfall variability and response to greenhouse warming. Geophysical Research Letter, 32, L17702. doi: 10.1029/2005GL023232.CrossRefGoogle Scholar
  25. Haensler, A., Saeed, F., & Jacob, D. (2013). Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Climatic Change, 121(2), 349–363. doi: 10.1007/s10584-013-0863-8.CrossRefGoogle Scholar
  26. Hagos, S. M., & Cook, K. H. (2008). Ocean warming and late-twentieth-century Sahel drought and recovery. Journal of Climate, 21(15), 3797–3814. doi: 10.1175/2008JCLI2055.1.CrossRefGoogle Scholar
  27. Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. International Journal of Climatology, 34, 623–642. doi: 10.1002/joc.3711.CrossRefGoogle Scholar
  28. Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P.W., Wild, M. & Zhai, P. M. (2013). Observations: Atmosphere and surface. In: T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  29. Ibrahim, B., Karambiri, H., Polcher, J., Yacouba, H., & Ribstein, P. (2014). Changes in rainfall regime over Burkina Faso under the climate change conditions simulated by 5 regional climate models. Climate Dynamics, 42, 1363–1381. doi: 10.1007/s00382-013-1837-2.CrossRefGoogle Scholar
  30. IPCC. (2013). Climate Change 2013: The Physical Science Basis. In T. F. Stocker, D. Qin, G. -K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. doi: 10.1017/CBO9781107415324.Google Scholar
  31. Riede, J. O., Posada, R., Fink, A. H., & Kaspar, F. (2016). What’s on the 5th IPCC Report for West Africa?. In: J. A. Yaro & J. Hesselberg (Eds.), Adaptation to Climate Change and Variability in Rural West Africa. Springer, Switzerland.Google Scholar
  32. Jones, C., Giorgi, F., & Asrar, G. (2011). The coordinated regional downscaling experiment: CORDEX an international downscaling link to CMIP5. CLIVAR Exchanges, 56(16), 34–40.Google Scholar
  33. Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., Menne, M. J., Peterson, T. C., Vose, R. S., & Zhang, H. M. (2015, June). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348(6242), 1469–1472. doi: 10.1126/science.aaa5632.Google Scholar
  34. Klutse, N. A. B., Sylla, M. B., Diallo, I., Sarr, A., Dosio, A., Diedhiou, A., Kamga, A., Lamptey, B., Ali, A., Gbobaniyi, E.O., Owusu, K., Lennard, C., Hewitson, B., Nikulin, G., Panitz, H. J., & Büchner, M. (2015). Daily characteristics of West African monsoon rainfall in CORDEX regional climate models. Theoretical and Applied Climatology. doi: 10.1007/s00704-014-1352-3 (In press).
  35. Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28, 205–241. doi: 10.1146/annurev.energy.28.050302.105459.CrossRefGoogle Scholar
  36. Laprise, R., Hernández-Díaz, L., Tete, K., et al. (2013). Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Climate Dynamics, 41(11), 3219–3246. doi: 10.1007/s00382-012-1651-2.CrossRefGoogle Scholar
  37. Lebel, T., & Ali, A. (2009). Recent trends in the Central and Western Sahel rainfall regime (1990–2007). Journal of Hydrology, 375(1–2), 52–64. doi: 10.1016/j.jhydrol.2008.11.030.CrossRefGoogle Scholar
  38. Legates, D. R., & Willmott, C. J. (1990). Mean seasonal and spatial variability in gauge-corrected, global precipitation. International Journal of Climatology, 10(2), 111–127. doi: 10.1002/joc.3370100202.CrossRefGoogle Scholar
  39. Leh, M. D. K., Matlock, M. D., Cummings, E. C., & Nalley, L. L. (2013). Quantifying and mapping multiple ecosystem services change in west Africa. Agriculture, Ecosystems & Environment, 165, 6–18. doi: 10.1016/j.agee.2012.12.001.CrossRefGoogle Scholar
  40. Lintner, B. R., Biasutti, M., Diffenbaugh, N. S., Lee, J. E., Niznik, M. J., & Findell, K. L. (2012). Amplification of wet and dry month occurrence over tropical land regions in response to global warming. Journal of Geophysical Research, 117, D11106. doi: 10.1029/2012JD017499.CrossRefGoogle Scholar
  41. Lobell, D. B., Schlenker, W. S., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620. doi: 10.1126/science.1204531.CrossRefGoogle Scholar
  42. Mahe, G., & Paturel, J. E. (2009). 1896–2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers. Comptes Rendues Geosciences, 341(7), 538–546. doi: 10.1016/j.crte.2009.05.002.CrossRefGoogle Scholar
  43. Mariotti, L., Diallo, I., Coppola, E., & Giorgi, F. (2014). Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections. Climatic Change, 125, 53–65. doi: 10.1007/s10584-014-1097-0.CrossRefGoogle Scholar
  44. Mohino, E., Janicot, S., & Bader, J. (2011). Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dynamics, 37(3), 419–440. doi: 10.1007/s00382-010-0867-2.CrossRefGoogle Scholar
  45. Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. doi: 10.1038/nature08823.Google Scholar
  46. Nicholson, S. (2005). On the question of the “recovery” of the rains in the West African Sahel. Journal of Arid Environments, 63(3), 615–641.CrossRefGoogle Scholar
  47. Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R., et al. (2012). Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. Journal of Climate, 25, 6057–6078. doi: 10.1175/JCLI-D-11-00375.1.CrossRefGoogle Scholar
  48. Novella, N. S., & Thiaw, W. M. (2013). African rainfall climatology version 2 for famine early warning systems. Journal of Applied Meteorology and Climatology, 52, 588–606. doi: 10.1175/JAMC-D-11-0238.1.CrossRefGoogle Scholar
  49. Padgham, J., Jabbour, J., & Dietrich, K. (2015). Managing change and building resilience: A multi-stressor analysis of urban and peri-urban agriculture in Africa and Asia. Urban Climate, 12, 183–204. doi: 10.1016/j.uclim.2015.04.003.CrossRefGoogle Scholar
  50. Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., & Hanson, C. E. (2007). Climate change 2007: impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (p. 976). Cambridge, UK: Cambridge University Press.Google Scholar
  51. Roehrig, R., Bouniol, D., Guichard, F., Hourdin, F., & Redelsperger, J. L. (2013). The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. Journal of Climate, 26, 6471–6505. doi: 10.1175/JCLI-D-12-00505.1.CrossRefGoogle Scholar
  52. Teichmann, C., Eggert, B., Elizalde, A., Haensler, A., Jacob, D., Kumar, P., et al. (2013). How does a regional climate model modify the projected climate change signal of the driving GCM: A study over different CORDEX regions using REMO. Atmosphere, 4(2), 214–236. doi: 10.3390/atmos4020214.CrossRefGoogle Scholar
  53. Sarr, B. (2012). Present and future climate change in West Africa: A crucial input for agricultural research prioritization for the region. Atmospheric Science Letter, 13, 108–112. doi: 10.1002/asl.368.CrossRefGoogle Scholar
  54. Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., et al. (2014). Multi-model assessment of water scarcity under climate change. PNAS, 111(9), 3245–3250. doi: 10.1073/pnas.1222460110.CrossRefGoogle Scholar
  55. Scoccimarro, E., Gualdi, S., Bellucci, A., Zampieri, M., & Navarra, A. (2013). Heavy precipitation events In a warmer climate: results from CMIP5 models. Journal of Climate, 26, 7902–7911. doi: 10.1175/JCLI-D-12-00850.1.Google Scholar
  56. Seth, A., Rauscher, S. A., Biasutti, M., Giannini, A., Camargo, S. J., & Rojas, M. (2013). CMIP5 projected changes in the annual cycle of precipitation. Journal of Climate, 26, 7328–7351. doi: 10.1175/JCLI-D-12-00726.1.CrossRefGoogle Scholar
  57. Sylla, M. B., Gaye, A. T., Jenkins, G. S., Pal, J. S., & Giorgi, F. (2010a). Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in a regional climate model projections. Journal of Geophysical Research-Atmosphere, 115, D16108. doi: 10.1029/2009JD012983.CrossRefGoogle Scholar
  58. Sylla, M.B., Dell’Aquila, A., Ruti, P. M., & Giorgi, F. (2010b). Simulation of the intraseasonal and the interannual variability of rainfall over West Africa with RegCM3 during the monsoon period. International Journal of Climatology, 30, 1865–1883. doi: 10.1002/joc.2029.
  59. Sylla, M. B., Giorgi, F., Ruti, P. M., Calmanti, S., & Dell’Aquila, A. (2011). The impact of deep convection on the West African summer monsoon climate: A regional climate model sensitivity study. Quarterly Journal of Royal Meteorological Society, 137, 1417–1430. doi: 10.1002/qj.853.CrossRefGoogle Scholar
  60. Sylla, M. B., Gaye, A. T., & Jenkins, G. S. (2012). On the fine-scale topography regulating changes in atmospheric hydrological cycle and extreme rainfall over West Africa in a regional climate model projections. International Journal of Geophysics, 981649. doi: 10.1155/2012/981649.Google Scholar
  61. Sylla, M. B., Giorgi, F., Coppola, E., & Mariotti, L. (2013a). Uncertainties in daily rainfall over Africa: Assessment of observation products and evaluation of a regional climate model simulation. International Journal of Climatology, 33, 1805–1817. doi: 10.1002/joc.3551.CrossRefGoogle Scholar
  62. Sylla, M. B., Diallo, I., & Pal, J. S. (2013b). West African monsoon in state-of-the-science regional climate models, Climate Variability—Regional and Thematic Patterns, Dr. Aondover Tarhule (Ed.), ISBN: 978-953-51-1187-0, InTech. doi: 10.5772/55140.Google Scholar
  63. Sylla, M. B., Elguindi, N., Giorgi, F., & Wisser, D. (2016). Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century. Climatic Change, 134(1), 241–253. doi: 10.1007/s10584-015-1522-z.Google Scholar
  64. Sylla, M. B., Giorgi, F., Pal, J. S., Gibba, P., Kebe, I., & Nikiema, M. (2015). Projected changes in the annual cycle of high intensity precipitation events over West Africa for the late 21st century. Journal of Climate, 28, 6475–6488. doi: 10.1175/JCLI-D-14-00854.1.CrossRefGoogle Scholar
  65. Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin American Meteorological Society, 93, 485–498. doi: 10.1175/BAMS-D-11-00094.1.CrossRefGoogle Scholar
  66. Vizy, E. K., & Cook, K. H. (2012). Mid-twenty-first-century changes in extreme events over northern and tropical Africa. Journal of Climate, 25(17), 5748–5767. doi: 10.1175/JCLI-D-11-00693.1.CrossRefGoogle Scholar
  67. WMO. (1986). Report on drought and countries affected by drought during 1974–1985. WCP-118, Geneva.Google Scholar
  68. WMO. (1989). Statistical distributions for flood frequency analysis. Operational Hydrology Report 33. WMO no 718.Google Scholar
  69. Zwiers, F.W., Alexander, L. V., Hegerl, G. C., Knutson, T. R., Kossin, J., Naveau, P., Nicholls, N., Schär, C., Seneviratne, S. I., & Zhang, X. (2013). Challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. In G. R. Asrar & J. W. Hurrell (Eds.), Climate Science for Serving Society: Research, Modeling and Prediction Priorities. doi  10.1007/978-94-007-6692-1_13.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mouhamadou Bamba Sylla
    • 1
    Email author
  • Pinghouinde Michel Nikiema
    • 1
    • 2
  • Peter Gibba
    • 1
    • 2
  • Ibourahima Kebe
    • 1
    • 2
  • Nana Ama Browne Klutse
    • 3
  1. 1.West African Science Service Center on Climate Change and Adapted Landuse (WASCAL), WASAL Competence CenterOuagadougouBurkina Faso
  2. 2.Graduate Research Program on West African Climate SystemWest African Science Service Center on Climate Change and Adapted Landuse (WASCAL)AkureNigeria
  3. 3.Ghana Atomic Energy CommissionGhana Space Science and Technology InstituteAccraGhana

Personalised recommendations