Agent-Based Visualization: A Simulation Tool for the Analysis of River Morphosedimentary Adjustments

  • Arnaud Grignard
  • Guillaume Fantino
  • J. Wesley Lauer
  • Alexandre Verpeaux
  • Alexis Drogoul
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9568)


Spatially explicit agent-based models and simulations are playing an increasing role in the modelling of complex natural and social systems. The ARCHEM project belongs to this new research area. It proposes a new methodology to visualize the fine-scale sediment transport of a river. In this paper, we present the first implementation of ARCHEM on a case study of the Rhone river. Even though visualization cannot replace the analysis of simulation results, it often constitutes a more accessible medium that can facilitate more specific and accurate interpretations of simulation output. It has the advantage of offering immediate feedback as well as a way to interact with and analyze results. We show how to support multiple viewpoints and different levels of abstraction using an agent-based visualization approach. We present a specific application focusing on dynamical 3D rendering of a GIS file and the analysis of morphosedimentary adjustments.


Agent-based model Visualization 3D GIS Human-environments interactions Sediment deposition 



The ARCHEM Project (Action de Recherche Collaborative sur les Hydrosystèmes et les Environnements en Mutation) has been supported by the LabEx DRIIHM and the OHM Vallèe du Rhône


  1. 1.
    Allan, R.: Survey of Agent Based Modelling and Simulation Tools (2009)Google Scholar
  2. 2.
    Kornhauser, D.U.W., Rand, W.: Design guidelines for agent based model visualization. J. Artif. Soc. Soc. Simul. 12(2), 1 (2009)Google Scholar
  3. 3.
    Gasmi, N., Grignard, A., Drogoul, A., Gaudou, B., Taillandier, P., Tessier, O., An, V.D.: Reproducing and exploring past events using agent-based geo-historical models. In: Grimaldo, F., Norling, E. (eds.) MABS 2014. LNCS, vol. 9002, pp. 151–163. Springer, Heidelberg (2015)Google Scholar
  4. 4.
    Grignard, A., Drogoul, A., Zucker, J.-D.: Online analysis and visualization of agent based models. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 662–672. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul, A.: GAMA 1.6: advancing the art of complex agent-based modeling and simulation. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS, vol. 8291, pp. 117–131. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Lauer, J., Parker, G.: Modeling framework for sediment deposition, storage, and evacuation in the floodplain of a meandering river: Theory. Water Resour. Res. 44(4) (2008)Google Scholar
  7. 7.
    Lauer, W., Viparelli, E., Piegay, H.: A 1-d size specific numerical model for gravel transport that includes sediment exchange with a floodplain. In: EGU General Assembly Conference Abstracts, vol. 16, p. 10126 (2014)Google Scholar
  8. 8.
    North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M., Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex Adapt. Syst. Model. 1(1), 3 (2013). CrossRefGoogle Scholar
  9. 9.
    Piégay, H., Radakovitch, O., Fantino, G.: Synthèse des résultats 2010–2013, recommandation opérationnelles et perspectivesGoogle Scholar
  10. 10.
    Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: review and development recommendations. Simulation 82(9), 609–623 (2006)CrossRefGoogle Scholar
  11. 11.
    Repenning, A.: Agentsheets: a tool for building domain-oriented visual programming environments. In: Proceedings of the INTERACT 1993 and CHI 1993 Conference on Human Factors in Computing Systems, pp. 142–143. ACM (1993)Google Scholar
  12. 12.
    Resnick, M.: Starlogo: an environment for decentralized modeling and decentralized thinking. In: Conference Companion on Human Factors in Computing Systems, pp. 11–12. ACM (1996)Google Scholar
  13. 13.
    Stefansson, B.: Swarm: an object oriented simulation platform applied to markets and organizations. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 59–71. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity. In: International Conference on Complex Systems, pp. 16–21 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Arnaud Grignard
    • 1
  • Guillaume Fantino
    • 2
  • J. Wesley Lauer
    • 3
  • Alexandre Verpeaux
    • 1
  • Alexis Drogoul
    • 1
  1. 1.IRD, UMI 209 UMMISCO, IRD France NordBondyFrance
  2. 2.GeopekaLyonFrance
  3. 3.Civil and Environmental EngineeringSeattle UniversityWashingtonUSA

Personalised recommendations