Exploring Agent Architectures for Farmer Behavior in Land-Use Change. A Case Study in Coastal Area of the Vietnamese Mekong Delta

  • Quang Chi Truong
  • Patrick Taillandier
  • Benoit Gaudou
  • Minh Quang Vo
  • Trung Hieu Nguyen
  • Alexis Drogoul
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9568)


Farmers are the key actors of land-use change processes. It is thus essential to choose a suitable architecture for farmer behavior to model such processes. In this paper, we compared three models with different architectures to model the farmer behavior in the coastal areas of the Ben Tre province: (i) The first one is a probabilistic model that allows farmer to select the land-use pattern based on land change probability; (ii) The second model is based on multi-criteria decision making and takes into account the land suitability of the parcel and the farmer benefit; (iii) The third model used a BDI (Beliefs - Desires - Intentions) architecture. For each of these models, we have compared the difference between simulated data and real data by using the Fuzzy Kappa coefficient. The results show the suitability of the BDI architecture to build land-use change model and to support decision-making on land-use planning.


Agent-based simulation Agent architecture BDI architecture Land-use change Mekong Delta 


  1. 1.
    Adam, C., Gaudou, B., Hickmott, S., Scerri, D.: Agents BDI et simulations sociales. unis pour le meilleur et pour le pire. In: RIA, pp. 11–43 (2011)Google Scholar
  2. 2.
    Balke, T., Gilbert, N.: How do agents make decisions? a survey. J. Artif. Soc. Soc. Simul. 17(4), 3 (2014)Google Scholar
  3. 3.
    Behzadi, S., Alesheikh, A.A.: Introducing a novel model of belief–desire–intention agent for urban land use planning. Eng. Appl. Artif. Intell. 26(9), 2028–2044 (2013)CrossRefGoogle Scholar
  4. 4.
    Castella, J.C., Trung, T.N., Boissau, S.: Participatory simulation of land-use changes in the northern mountains of Vietnam: the combined use of an agent-based model, a role-playing game, and a geographic information system. Ecology Soc. 10(1), 27 (2005)Google Scholar
  5. 5.
    Dolan, P., Hallsworth, M., Halpern, D., King, D., Metcalfe, R., Vlaev, I.: Influencing behaviour: the mindspace way. J. Econ. Psychol. 33(1), 264–277 (2003)CrossRefGoogle Scholar
  6. 6.
    Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul, A.: GAMA 1.6: advancing the art of complex agent-based modeling and simulation. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS, vol. 8291, pp. 117–131. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Jepsen, M.R., Leisz, S., Rasmussen, K., Jakobsen, J., Muller-Jensen, L., Christiansen, L.: Agent-based modelling of shifting cultivation field patterns, Vietnam. Int. J. Geog. Inform. Sci. 20(9), 1067–1085 (2006)CrossRefGoogle Scholar
  8. 8.
    Mialhe, F., Becu, N., Gunnell, Y.: An agent-based model for analyzing landuse dynamics in response to farmer behaviour and environmental change in the Pampanga Delta, Philippines. Agric. Ecosyst. Environ. 161, 55–69 (2012)CrossRefGoogle Scholar
  9. 9.
    Minh, V.Q., Van, N.T.B.: Simulation of inland water inundation depth under changing of elevation using statistics and spatial interpolation techniques. J. Sci. Cantho Univ. 17a, 110–117 (2011)Google Scholar
  10. 10.
    MONRE: Circular no. 19/2009/TT-BTNMT: Detailing the establishment, regulation and evaluation planning, land-use planning, Ministry of Natural Resources and Environment of Vietnam (2009)Google Scholar
  11. 11.
    Moreno, N., Wang, F., Marceau, D.J.: Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model. Comput. Environ. Urban Syst. 33(1), 44–54 (2009)CrossRefGoogle Scholar
  12. 12.
    Nhan, D.K., Trung, N.H., Sanh, N.V.: The impact of weather variability on rice and aquaculture production in the mekong delta. In: Stewart, M.A., Coclanis, P.A. (eds.) Environmental Change and Agricultural Sustainability in the Mekong Delta. AGCR, vol. 45, pp. 437–451. Springer, Netherlands (2011)Google Scholar
  13. 13.
    Nilsson, N.J.: A production system for automatic deduction. Technical report, Stanford University (2015)Google Scholar
  14. 14.
    Parker, D.C., Manson, S.M., Janssen, M.A., Hoffman, M.J., Deadman, P.: Multi-agent systems for the simulation of land-use and land- cover change: a review. Ann. Assoc. Am. Geogr. 93(2), 316–340 (2003)CrossRefGoogle Scholar
  15. 15.
    PCBT: Report of land-use zoning in 2020 and the land-use plan for 5 early years 2011–2015 of Ben Tre province, People’s Committee of Ben Tre province (2011)Google Scholar
  16. 16.
    Rao, A., Georgeff, M.: Modeling rational agents within a BDI-architecture. In: Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning, pp. 473–484 (1991)Google Scholar
  17. 17.
    Taillandier, P., Therond, O.: Use of the belief theory to formalize agent decision making processes: application to cropping plan decision making. In: European Simulation and Modelling Conference, pp. 138–142 (2011)Google Scholar
  18. 18.
    Taillandier, P., Therond, O., Gaudou, B.: A new BDI agent architecture based on the belief theory. application to the modelling of cropping plan decision-making. In: International Environmental Modelling and Software Society (iEMSs) (2012)Google Scholar
  19. 19.
    Tri, L.Q., Guong, V.T., Vu, P.T., Binh, N.T.S., Kiet, N.H., Chien, V.V.: Evaluating the changes of soil properties and landuse at three coastal districts in Soc Trang province. J. Sci. Cantho Univ. 9, 59–68 (2008)Google Scholar
  20. 20.
    Tri, V.P.D., Trung, N.H., Thanh, V.Q.: Vulnerability to flood in the Vietnamese Mekong Delta: mapping and uncertainty assessment. J. Environ. Sci. Eng. B 2, 229–237 (2013)Google Scholar
  21. 21.
    Visser, H., de Nijs, T.: The map comparison kit. Environ. Model. Softw. 21(3), 346–358 (2006)CrossRefGoogle Scholar
  22. 22.
    VNA: Article 24, Land on Law 2003, Vietnamese National Assembly (2003)Google Scholar
  23. 23.
    Wassmann, R., Hien, N.X., Hoanh, C.T., Tuong, T.P.: Sea level rise affecting the Vietnamese Mekong Delta: water elevation in the flood season and implications for rice production. Climatic Change 66(1–2), 89–107 (2004)CrossRefGoogle Scholar
  24. 24.
    Yang, X., Zheng, X.Q., Chen, R.: A land use change model: integrating landscape pattern indexes and Markov-CA. Ecol. Model. 283, 1–7 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Quang Chi Truong
    • 1
    • 2
  • Patrick Taillandier
    • 3
  • Benoit Gaudou
    • 4
  • Minh Quang Vo
    • 1
  • Trung Hieu Nguyen
    • 1
  • Alexis Drogoul
    • 5
  1. 1.CTU/IRD JEAI DREAMCENRES Can Tho UniversityCan ThoVietnam
  2. 2.PDI-MSC, IRD/UPMC/Sorbonne UniversitiesParisFrance
  3. 3.UMR IDEESUniversity of RouenRouenFrance
  4. 4.IRITUniversity of Toulouse 1 CapitoleToulouseFrance
  5. 5.UMI 209 UMMISCO, IRD/UPMC/Sorbonne UniversitesParisFrance

Personalised recommendations