Advertisement

Extending the Gillespie’s Stochastic Simulation Algorithm for Integrating Discrete-Event and Multi-Agent Based Simulation

  • Sara MontagnaEmail author
  • Andrea Omicini
  • Danilo Pianini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9568)

Abstract

Whereas Multi-Agent Based Simulation (MABS) is emerging as a reference approach for complex system simulation, the event-driven approach of Discrete-Event Simulation (DES) is the most used approach in the simulation mainstream. In this paper we elaborate on two intuitions: (i) event-based systems and multi-agent systems are amenable of a coherent interpretation within a unique conceptual framework; (ii) integrating MABS and DES can lead to a more expressive and powerful simulation framework. Accordingly, we propose a computational model integrating DES and MABS based on an extension of the Gillespie’s stochastic simulation algorithm. Then we discuss a case of a simulation platform (ALCHEMIST) specifically targeted at such a kind of complex models, and show an example of urban crowd steering simulation.

Keywords

Multi-agent based simulation Discrete-event simulation Stochastic simulation Gillespie algorithm ALCHEMIST 

References

  1. 1.
    Aiello, F., Bellifemine, F.L., Fortino, G., Galzarano, S., Gravina, R.: An agent-based signal processing in-node environment for real-time human activity monitoring based on wireless body sensor networks. Eng. Appl. Artif. Intell. 24(7), 1147–1161 (2011)CrossRefGoogle Scholar
  2. 2.
    Allan, R.: Survey of agent based modelling and simulation tools. Technical report DL-TR-2010-007, Computational Science and Engineering Department (2010)Google Scholar
  3. 3.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley, Chichester (2007)CrossRefGoogle Scholar
  4. 4.
    Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Nat. Acad. Sci. 99(s. 3), 7280–7287 (2002)CrossRefGoogle Scholar
  5. 5.
    Burrage, K., Burrage, P.M., Leier, A., Marquez-Lago, T., Nicolau Jr., D.V.: Stochastic simulation for spatial modelling of dynamic processes in a living cell. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds.) Engineering Approaches to Systems and Synthetic Biology, pp. 43–62. Springer, New York (2011)Google Scholar
  6. 6.
    Ciocchetta, F., Guerriero, M.L.: Modelling biological compartments in Bio-PEPA. ENTCS 227, 77–95 (2009)zbMATHGoogle Scholar
  7. 7.
    Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Nat. Comput. 12(1), 43–67 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Using event-driven lightweight DSC-based agents for MAS modelling. Int. J. Agent-Oriented Softw. Eng. 4(2), 113–140 (2010)CrossRefGoogle Scholar
  9. 9.
    Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)CrossRefGoogle Scholar
  10. 10.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  11. 11.
    González Pérez, P.P., Omicini, A., Sbaraglia, M.: A biochemically-inspired coordination-based model for simulating intracellular signalling pathways. J. Simul. 7(3), 216–226 (2013)CrossRefGoogle Scholar
  12. 12.
    Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: Copasi - a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006)CrossRefGoogle Scholar
  13. 13.
    Kierzek, A.M.: STOCKS: STOChastic kinetic simulations of biochemical systems with Gillespie algorithm. Bioinformatics 18(3), 470–481 (2002)CrossRefGoogle Scholar
  14. 14.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.C.: Mason: a multiagent simulation environment. Simulation 81(7), 517–527 (2005)CrossRefGoogle Scholar
  15. 15.
    Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. J. Simul. 4, 151–162 (2010)CrossRefGoogle Scholar
  16. 16.
    Meyer, R.: Event-driven multi-agent simulation. In: Grimaldo, F., Norling, E. (eds.) MABS 2014. LNCS, vol. 9002, pp. 3–16. Springer, Heidelberg (2015)Google Scholar
  17. 17.
    Michel, F., Ferber, J., Drogoul, A.: Multi-agent systems and simulation: a survey from the agents community’s perspective. In: Multi-Agent Systems: Simulation and Applications. CRC Press (2009)Google Scholar
  18. 18.
    Minar, N., Burkhart, R., Langton, C.: The Swarm simulation system: a toolkit for building multi-agent simulations. Technical report 96–06-042, Santa Fe Institute (1996)Google Scholar
  19. 19.
    Molesini, A., Casadei, M., Omicini, A., Viroli, M.: Simulation in agent-oriented software engineering: the SODA case study. Sci. Comput. Program. 78(6), 705–714 (2013)CrossRefGoogle Scholar
  20. 20.
    Montagna, S., Pianini, D., Viroli, M.: Gradient-based self-organisation patterns of anticipative adaptation. In: 6th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2012). pp. 169–174 (2012)Google Scholar
  21. 21.
    Montagna, S., Pianini, D., Viroli, M.: A model for Drosophila Melanogaster development from a single cell to stripe pattern formation. In: 27th Annual ACM Symposium on Applied Computing (SAC 2012). pp. 1406–1412. ACM (2012)Google Scholar
  22. 22.
    Montagna, S., Viroli, M.: A framework for modelling and simulating networks of cells. ENTCS 268, 115–129 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Zambonelli, F.: Injecting self-organisation into pervasive service ecosystems. Mob. Netw. Appl. 18(3), 398–412 (2013)CrossRefGoogle Scholar
  24. 24.
    North, M., Collier, N., Ozik, J., Tatara, E., Macal, C., Bragen, M., Sydelko, P.: Complex adaptive systems modeling with Repast Simphony. Complex Adapt. Syst. Model. 1(1), 3 (2013)CrossRefGoogle Scholar
  25. 25.
    Omicini, A.: Event-based vs. multi-agent systems: towards a unified conceptual framework. In: 2015 19th IEEE International Conference on Computer Supported Cooperative Work in Design (CSCWD 2015). IEEE Computer Society (May 2015)Google Scholar
  26. 26.
    Omicini, A., Fortino, G., Mariani, S.: Blending event-based and multi-agent systems around coordination abstractions. In: Holvoet, T., Viroli, M. (eds.) Coordination Models and Languages. LNCS, vol. 9037, pp. 186–193. Springer, Heidelberg (2015)Google Scholar
  27. 27.
    Omicini, A., Ricci, A., Viroli, M.: Coordination artifacts as first-class abstractions for MAS engineering: state of the research. In: Garcia, A., Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) Software Engineering for Multi-Agent Systems IV: Research Issues and Practical Applications. LNCS, vol. 3914, pp. 71–90. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts: environment-based coordination for intelligent agents. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd international Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004). LNCS, vol. 1, pp. 286–293. ACM, New York, USA (2004)Google Scholar
  29. 29.
    Omicini, A., Zambonelli, F.: Coordination for internet application development. Auton. Agents Multi-Agent Syst. 2(3), 251–269 (1999)CrossRefGoogle Scholar
  30. 30.
    Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computational systems with Alchemist. J. Simul. 7(3), 202–215 (2013)CrossRefGoogle Scholar
  31. 31.
    Pianini, D., Viroli, M., Zambonelli, F., Ferscha, A.: HPC from a self-organisation perspective: the case of crowd steering at the urban scale. In: High Performance Computing Simulation (HPCS 2014). pp. 460–467 (2014)Google Scholar
  32. 32.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80, 25–31 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: review and development recommendations. Simulation 82(9), 609–623 (2006)CrossRefGoogle Scholar
  34. 34.
    Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI architecture. In: Allen, J.F., Fikes, R., Sandewall, E. (eds.) 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR’91), pp. 473–484. Morgan Kaufmann Publishers, San Mateo, CA (1991)Google Scholar
  35. 35.
    Shimoni, Y., Nudelman, G., Hayot, F., Sealfon, S.C.: Multi-scale stochastic simulation of diffusion-coupled agents and its application to cell culture simulation. PLoS ONE 6(12), e29298 (2011)CrossRefGoogle Scholar
  36. 36.
    Slepoy, A., Thompson, A.P., Plimpton, S.J.: A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128(20), 205101 (2008)CrossRefGoogle Scholar
  37. 37.
    Versari, C., Busi, N.: Efficient stochastic simulation of biological systems with multiple variable volumes. ENTCS 194(3), 165–180 (2008)zbMATHGoogle Scholar
  38. 38.
    Weyns, D., Omicini, A., Odell, J.: Environment as a first-class abstraction in multi-agent systems. Auton. Agents Multi-Agent Syst. 14(1), 5–30 (2007)CrossRefGoogle Scholar
  39. 39.
    White, T., Pagurek, B.: Towards multi-swarm problem solving in networks. In: Proceedings of International Conference on Multi Agent Systems 1998, 333–340 (1998)Google Scholar
  40. 40.
    Zabet, N.R., Adryan, B.: GRiP: a computational tool to simulate transcription factor binding in prokaryotes. Bioinformatics 28(9), 1287–1289 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.DISI, Alma Mater Studiorum–Università di BolognaBolognaItaly

Personalised recommendations