Advertisement

Introduction to Emotions and Personality in Personalized Systems

  • Marko Tkalčič
  • Berardina De Carolis
  • Marco de Gemmis
  • Ante Odić
  • Andrej Košir
Chapter
Part of the Human–Computer Interaction Series book series (HCIS)

Abstract

Personalized systems traditionally used the traces of user interactions to learn the user model, which was used by sophisticated algorithms to choose the appropriate content for the user and the situation. Recently, new types of user models started to emerge, which take into account more user-centric information, such as emotions and personality. Initially, these models were conceptually interesting but of little practical value as emotions and personality were difficult to acquire. However, with the recent advancement in unobtrusive technologies for the detection of emotions and personality these models are becoming interesting both for researchers and practitioners in the domain of personalized systems. This chapter introduces the book, which aims at covering the whole spectrum of knowledge needed to research and develop emotion- and personality-aware systems. The chapters cover (i) psychological theories, (ii) computational methods for the unobtrusive acquisition of emotions and personality, (iii) applications of personalized systems in recommender systems, conversational systems, music information retrieval, and e-learning, (iv) evaluation methods, and (v) privacy issues.

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005). doi: 10.1109/TKDE.2005.99. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1423975, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1423975
  2. 2.
    Aurier, P., Guintcheva, G.: The dynamics of emotions in movie consumption: a spectator-centred approach. Int. J. Arts Manage. 17(2), 5–18 (2015)Google Scholar
  3. 3.
    Bell, R.M., Koren, Y., Volinsky, C.: The BellKor solution to the Netflix Prize A factorization model (2007)Google Scholar
  4. 4.
    Berkovsky, S.: Emotion-based movie recommendations. In: Proceedings of the 3rd Workshop on Emotions and Personality in Personalized Systems 2015—EMPIRE’15, pp. 1–1. ACM Press, New York, New York, USA (2015). doi: 10.1145/2809643.2815362. http://dl.acm.org/citation.cfm?doid=2809643.2815362
  5. 5.
    Cantador, I., Fernández-tobías, I., Bellogín, A.: Relating Personality types with user preferences in multiple entertainment domains. In: EMPIRE 1st Workshop on “Emotions and Personality in Personalized Services”, 10. June 2013, Rome (2013)Google Scholar
  6. 6.
    Chamorro-Premuzic, T., Furnham, A.: Personality and music: can traits explain how people use music in everyday life? British J. Psychol. (London, England : 1953) 98, 175–85 (2007). doi: 10.1348/000712606X111177. http://www.ncbi.nlm.nih.gov/pubmed/17456267
  7. 7.
    Ekkekakis, P.: Affect, mood, and emotion. In: Tenenbaum, G., Eklund, R., Kamata, A. (eds.) Measurement in Sport and Exercise Psychology, chap. 28. Human Kinetics (2012). http://www.humankinetics.com/products/all-products/measurement-in-sport-and-exercise-psychology-wweb-resource-ebook
  8. 8.
    Farnadi, G., Sitaraman, G., Sushmita, S., Celli, F., Kosinski, M., Stillwell, D., Davalos, S., Moens, M.F., De Cock, M.: Computational personality recognition in social media. User Modeling and User-Adapted Interaction (Special Issue on Personality in Personalized Systems) (2016). doi: 10.1007/s11257-016-9171-0. http://link.springer.com/10.1007/s11257-016-9171-0
  9. 9.
    Golbeck, J., Robles, C., Turner, K.: Predicting personality with social media. In: Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems - CHI EA’11 p. 253 (2011). doi: 10.1145/1979742.1979614. http://portal.acm.org/citation.cfm?doid=1979742.1979614
  10. 10.
    González, G., de la Rosa, J., Dugdale, J., Pavard, B., El Jed, M., Pallamin, N., Angulo, C., Klann, M.: Towards ambient recommender systems: results of new cross-disciplinary trends. In: ECAI 2006 Workshop on Recommender Systems, p. 128. Citeseer (2006) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.1870&rep=rep1&type=pdf#page=136
  11. 11.
    Gunes, H., Schuller, B., Pantic, M., Cowie, R.: Emotion representation, analysis and synthesis in continuous space: a survey. In: Face and Gesture 2011, pp. 827–834. IEEE (2011). doi: 10.1109/FG.2011.5771357. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5771357
  12. 12.
    Hu, R., Pu, P.: A study on user perception of personality-based recommender systems. user modeling, adaptation, and personalization 6075, 291–302 (2010). doi: 10.1007/978-3-642-13470-8_27. http://www.springerlink.com/index/23811UV83U1P1680.pdf
  13. 13.
    Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE (2008). doi: 10.1109/ICDM.2008.22. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4781121
  14. 14.
    Jameson, A., Willemsen, M.C., Felfernig, A., de Gemmis, M., Lops, P., Semeraro, G., Chen, L.: Human decision making and recommender systems. In: Recommender Systems Handbook, vol. 54, pp. 611–648. Springer US, Boston, MA (2015). doi: 10.1007/978-1-4899-7637-6_18. http://www.springerlink.com/index/10.1007/978-0-387-85820-3, http://link.springer.com/10.1007/978-1-4899-7637-6_18
  15. 15.
    Kahneman, D.: Thinking, fast and slow, vol. 1. Farrar, Straus and Giroux (2011). http://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637
  16. 16.
    Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. In: Proceedings of the National Academy of Sciences of the United States of America 110(15), 5802–5805 (2013). doi: 10.1073/pnas.1218772110. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3625324&tool=pmcentrez&rendertype=abstract
  17. 17.
    Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-scale emotional contagion through social networks. In: Proceedings of the National Academy of Sciences of the United States of America 111(29), 8788–8790 (2014).doi: 10.1073/pnas.1320040111. http://www.ncbi.nlm.nih.gov/pubmed/24994898, http://www.ncbi.nlm.nih.gov/pubmed/24889601
  18. 18.
    Lonsdale, A.J., North, A.C.: Why do we listen to music? A uses and gratifications analysis. Brit. J. Psychol. (London, England : 1953) 102(1), 108–134 (2011). doi: 10.1348/000712610X506831. http://www.ncbi.nlm.nih.gov/pubmed/21241288
  19. 19.
    McCrae, R.R., John, O.P.: An introduction to the five-factor model and its applications. J. Pers. 60(2), p175–215 (1992)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Quercia, D., Kosinski, M., Stillwell, D., Crowcroft, J.: Our twitter profiles, our selves: Predicting personality with twitter. In: Proceedings—2011 IEEE International Conference on Privacy, Security, Risk and Trust and IEEE International Conference on Social Computing, PASSAT/SocialCom 2011, pp. 180–185. IEEE (2011). doi: 10.1109/PASSAT/SocialCom.2011.26. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6113111, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6113111
  22. 22.
    Rendle, S., Freudenthaler, C.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, June 18–21, 2009 pp. 452–461 (2009). http://dl.acm.org/citation.cfm?id=1795167
  23. 23.
    Rentfrow, P.J., Gosling, S.D.: The do re mi’s of everyday life: the structure and personality correlates of music preferences. J. Pers. Soc. Psychol. 84(6), 1236–1256 (2003). doi: 10.1037/0022-3514.84.6.1236. http://doi.apa.org/getdoi.cfm?doi=10.1037/0022-3514.84.6.1236
  24. 24.
    Resnick, P., Varian, H.: Recommender systems. Commun. ACM 40(3), 56–58 (1997). http://portal.acm.org/citation.cfm?id=245121
  25. 25.
    Rusting, C.L.: Personality, mood, and cognitive processing of emotional information: three conceptual frameworks. Psychol. Bull. 124(2), 165–196 (1998). http://www.ncbi.nlm.nih.gov/pubmed/9747185
  26. 26.
    Tkalčič, M., Burnik, U., Košir, A.: Using affective parameters in a content-based recommender system for images. User Model. User-Adapt. Interact. 20(4), 279–311 (2010). doi: 10.1007/s11257-010-9079-z. http://www.springerlink.com/content/3l2p657572rt4j11, http://www.springerlink.com/content/3l2p657572rt4j11/, http://www.springerlink.com/index/10.1007/s11257-010-9079-z
  27. 27.
    Tkalčič, M., Kunaver, M., Tasič, J., Košir, A.: Personality based user similarity measure for a collaborative recommender system. In: Peter, C., Crane, E., Axelrod, L., Agius, H., Afzal, S., Balaam, M. (eds.) 5th Workshop on Emotion in Human-Computer Interaction-Real World Challenges, p. 30 (2009). http://publica.fraunhofer.de/documents/N-113443.html
  28. 28.
    Vinciarelli, A., Mohammadi, G.: A Survey of personality computing. IEEE Trans. Affect. Comput. 3045(c), 1–1 (2014). doi: 10.1109/TAFFC.2014.2330816. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6834774
  29. 29.
    Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009). doi: 10.1109/TPAMI.2008.52

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marko Tkalčič
    • 1
  • Berardina De Carolis
    • 2
  • Marco de Gemmis
    • 2
  • Ante Odić
    • 3
  • Andrej Košir
    • 4
  1. 1.Department of Computational PerceptionJohannes Kepler UniversityLinzAustria
  2. 2.Department of Computer ScienceUniversity of Bari Aldo MoroBariItaly
  3. 3.Outfit7 (Slovenian Subsidiary Ekipa2 D.o.o.)LjubljanaSlovenia
  4. 4.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations