Scleroderma pp 125-129 | Cite as

Systems Biology Approaches to Understanding the Pathogenesis of Systemic Sclerosis

  • J. Matthew Mahoney
  • Jaclyn N. Taroni
  • Michael L. WhitfieldEmail author


Genome-wide transcriptional profiling and genome-wide association studies of SSc skin have provided a wealth of information that can be integrated comprehensively to increase our understanding of SSc pathophysiology. These approaches measure and quantify SSc heterogeneity on the molecular level using unbiased genome-wide measurements. Concurrently, powerful systems biology tools have been developed that collate and analyze the tens of thousands of publicly available data sets and integrate these data with our comprehensive body of biological knowledge, thus providing an interpretive framework to understand these results. Systems biology analyses of SSc are allowing us to build a comprehensive picture of pathogenesis and progression that will result in the identification of novel therapeutic targets.


Systems biology Networks Systemic sclerosis Scleroderma Genomics Gene expression Genome-wide association studies (GWAS) Genetic polymorphisms SNPs 


  1. 1.
    Assassi S, Radstake TRDJ, Mayes MD, Martin J. Genetics of scleroderma: implications for personalized medicine? BMC Med. BioMed Central Ltd; 2013;11(1):9.Google Scholar
  2. 2.
    Katsumoto TR, Whitfield ML, Connolly MK. The pathogenesis of systemic sclerosis. Annu Rev Pathol. 2011;6(1):509–37.CrossRefPubMedGoogle Scholar
  3. 3.
    Milano A, Pendergrass SA, Sargent JL, George LK, McCalmont TH, Connolly MK, et al. Molecular subsets in the gene expression signatures of scleroderma skin. Butler G, editor. PLoS ONE. Public Library of Science; 2008;3(7):e2696.Google Scholar
  4. 4.
    Pendergrass SA, Lemaire R, Francis IP, Mahoney JM, Lafyatis R, Whitfield ML. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J Invest Dermatol. Nature Publishing Group; 2012;132(5):1363–73.Google Scholar
  5. 5.
    Hinchcliff M, Huang C-C, Wood TA, Mahoney JM, Martyanov V, Bhattacharyya S, et al. Molecular Signatures in Skin Associated with ClinicalImprovement during Mycophenolate Treatment inSystemic Sclerosis. J Invest Dermatol. Nature Publishing Group; 2013;133(8):1979–89.Google Scholar
  6. 6.
    Pendergrass SA, Hayes E, Farina G, Lemaire R, Farber HW, Whitfield ML, et al. Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. Morty RE, editor. PLoS ONE. Public Library of Science; 2010;5(8):e12106.Google Scholar
  7. 7.
    Risbano MG, Meadows CA, Coldren CD, Jenkins TJ, Edwards MG, Collier D, et al. Altered immune phenotype in peripheral blood cells of patients with scleroderma-associated pulmonary hypertension. Clin Transl Sci. Blackwell Publishing Inc; 2010;3(5):210–8.Google Scholar
  8. 8.
    Taroni JN, Martyanov V, Huang C-C, Mahoney JM, Hirano I, Shetuni B, et al. Molecular characterization of systemic sclerosis esophageal pathology identifies inflammatory and proliferative signatures. Arthritis Res Ther. 5th ed. BioMed Central Ltd; 2015;17(1):194.Google Scholar
  9. 9.
    Hsu E, Shi H, Jordan RM, Lyons-Weiler J, Pilewski JM, Feghali-Bostwick CA. Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension. Arthritis Rheum. Wiley Subscription Services, Inc., A Wiley Company; 2011;63(3):783–94.Google Scholar
  10. 10.
    Christmann RB, Sampaio-Barros P, Stifano G, Borges CL, de Carvalho CR, Kairalla R, et al. Association of Interferon- and transforming growth factor β-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheumatol. 2014;66(3):714–25.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Marangoni RG, Korman BD, Wei J, Wood TA, Graham LV, Whitfield ML, et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol. 2015;67(4):1062–73.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mahoney JM, Taroni J, Martyanov V, Wood TA, Greene CS, Pioli PA, et al. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms. Assassi S, editor. PLoS Comp Biol. Public Library of Science; 2015;11(1):e1004005.Google Scholar
  13. 13.
    Chuang H-Y, Hofree M, Ideker T. A decade of systems biology. Annu Rev Cell Dev Biol. Annual Reviews; 2010;26(1):721–44.Google Scholar
  14. 14.
    Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Newman M. Networks: an introduction. New York City: OUP Oxford; 2010.Google Scholar
  16. 16.
    Fortunato S. Community detection in graphs. Physics Rep. 2010;486(3–5):75–174.CrossRefGoogle Scholar
  17. 17.
    Nepusz T, Petróczi A, Négyessy L, Bazsó F. Fuzzy communities and the concept of bridgeness in complex networks. Phys Rev E. 2008;77(1):016107.CrossRefGoogle Scholar
  18. 18.
    Hwang, W, Cho, Y. R, Zhang, A, and Ramanathan, M (2006). Bridging centrality: identifying bridging nodes in scale-free networks. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 20–23.Google Scholar
  19. 19.
    Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comp Biol. Public Library of Science; 2007;3(4):e59.Google Scholar
  20. 20.
    Beretta L, Cappiello F, Moore JH, Barili M, Greene CS, Scorza R. Ability of epistatic interactions of cytokine single-nucleotide polymorphisms to predict susceptibility to disease subsets in systemic sclerosis patients. Arthritis Rheum. Wiley Subscription Services, Inc., A Wiley Company; 2008;59(7):974–83.Google Scholar
  21. 21.
    Beretta L, Cappiello F, Moore JH, Scorza R. Interleukin-1 gene complex single nucleotide polymorphisms in systemic sclerosis: a further step ahead. Hum Immunol. 2008;69(3):187–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Noda S, Asano Y, Nishimura S, Taniguchi T, Fujiu K, Manabe I, et al. Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat Commun. Nature Publishing Group; 2014;5:5797.Google Scholar
  23. 23.
    Wong AK, Park CY, Greene CS, Bongo LA, Guan Y, Troyanskaya OG. IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res. Oxford University Press; 2012;40(Web Server issue):W484–90.Google Scholar
  24. 24.
    Tyler AL, Asselbergs FW, Williams SM, Moore JH. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays. WILEY‐VCH Verlag; 2009;31(2):220–7.Google Scholar
  25. 25.
    Tyler AL, Crawford DC, Pendergrass SA. The detection and characterization of pleiotropy: discovery, progress, and promise. Brief Bioinformatics. 2016;17(1):13–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet. 2015;47(6):569–76.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chakravarty EF, Martyanov V, Fiorentino D, Wood TA, Haddon DJ, Jarrell JA, et al. Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Res Ther. BioMed Central Ltd; 2015;17(1):159.Google Scholar
  28. 28.
    Gordon JK, Martyanov V, Magro C, Wildman HF, Wood TA, Huang W-T, et al. Nilotinib (Tasigna™) in the treatment of early diffuse systemic sclerosis: an open-label, pilot clinical trial. Arthritis Res Ther. BioMed Central Ltd; 2015;17(1):213.Google Scholar
  29. 29.
    Niepel M, Hafner M, Pace EA, Chung M, Chai DH, Zhou L, et al. Profiles of Basal and stimulated receptor signaling networks predict drug response in breast cancer lines. Sci Signal. American Association for the Advancement of Science; 2013;6(294):ra84–4.Google Scholar
  30. 30.
    Niepel M, Hafner M, Pace EA, Chung M, Chai DH, Zhou L, et al. Analysis of growth factor signaling in genetically diverse breast cancer lines. BMC Biol. BioMed Central Ltd; 2014;12(1):20.Google Scholar
  31. 31.
    Jahchan NS, Dudley JT, Mazur PK, Flores N, Yang D, Palmerton A, et al. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov. American Association for Cancer Research; 2013;3(12):1364–77.Google Scholar
  32. 32.
    Kodama K, Toda K, Morinaga S, Yamada S, Butte AJ. Anti-CD44 antibody treatment lowers hyperglycemia and improves insulin resistance, adipose inflammation, and hepatic steatosis in diet-induced obese mice. Diabetes. American Diabetes Association; 2015;64(3):867–75.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • J. Matthew Mahoney
    • 1
  • Jaclyn N. Taroni
    • 2
  • Michael L. Whitfield
    • 2
    • 3
    Email author
  1. 1.Department of Neurological SciencesUniversity of VermontBurlingtonUSA
  2. 2.Department of GeneticsGeisel School of Medicine at DartmouthHanoverUSA
  3. 3.Department of GeneticsDartmouth Medical SchoolHanoverUSA

Personalised recommendations